



Centre for Environment  
Justice and Development

# FIELD SURVEY REPORT

Use and Impacts of Pesticides in Kajiado, Kirinyaga and  
Nakuru Counties, Kenya



November 2025



# Field Survey Report: Use and Impacts of Pesticides in Kajiado, Kirinyaga and Nakuru Counties, Kenya

November, 2025



©2025. Centre for Environment Justice and Development (CEJAD). All rights reserved.

The information in this publication may be used free of charge for advocacy, campaigning, education and research purposes, provided the source is fully acknowledged. The copyright holder requests that all such uses be reported to CEJAD for impact assessment.

Comments and inquiries may be forwarded to:

Centre for Environment Justice and Development (CEJAD)  
3rd Floor, Ngong Hills Hotel Business Centre  
Opposite Bishop Magua Centre, Ngong Rd  
Nairobi, Kenya  
Tel: +254 0720 465 400  
Email: [info@cejadkenya.org](mailto:info@cejadkenya.org)  
Website: [www.cejadkenya.org](http://www.cejadkenya.org)  
Facebook: Centre for Environmental Justice And Development - CEJAD  
X: @CEJADKenya  
Instagram: @cejad\_kenya  
LinkedIn: Centre for Environmental Justice and Development

**Authors:** Martha Mwikali Mwanzia, Fredrick Onyango Otieno, Griffins Ochieng Ochola, Aron Kecha Agwa, Richard Dimba Kiaka (PhD) ,Sherphine Apiyo Kochiyo

**Contributors:** Eustace Kiarie, Wycliffe Nyamao, Fredrick Juma, Francis Nkadayo

**Layout and design:** Brian Kigame

THE  
SIGRID  
RAUSING  
TRUST

This document has been produced with the financial support from The Sigrid Rausing Trust (SRT). The views herein shall not necessarily be taken to reflect the official opinion of SRT.

## Abbreviations

|       |                                                                         |
|-------|-------------------------------------------------------------------------|
| CEJAD | Centre for Environment Justice and Development                          |
| CPAM  | Community-based Pesticide Action Monitoring                             |
| DOSHS | Directorate of Occupational Safety and Health Services                  |
| ECHA  | European Chemicals Agency                                               |
| EPA   | Environmental Protection Agency                                         |
| EU    | European Union                                                          |
| FAO   | Food and Agriculture Organization of United Nations                     |
| GHS   | Globally Harmonized System of Classification and Labelling of Chemicals |
| HHPs  | Highly hazardous pesticides                                             |
| IARC  | International Agency for Research on Cancer                             |
| JMPM  | Joint Meeting on Pesticide Management by FAO/WHO                        |
| KRA   | Kenya Revenue Authority                                                 |
| LMICs | Low- and middle-income countries                                        |
| PAN   | Pesticide Action Network                                                |
| PCPB  | Pest Control Products Board                                             |
| PPEs  | Personal protective equipment                                           |
| TPHPA | Tanzania Plant Health and Pesticides Authority                          |
| WHO   | World Health Organization                                               |

# Executive Summary

## Background

There has been growing debate on the impact of pesticides used in the country. Whereas Kenya has no publicly available list of declared HHPs, other stakeholders have identified about 195 pesticide products as HHPs using the Pesticide Action Network (PAN) International list of HHPs (Silke Bollmohr, 2023). It is estimated that 76% of the volume of pesticides used by farmers in Kenya are considered as HHPs.

The government of Kenya has taken efforts to review and address potential HHPs, leading to a number of pesticides being withdrawn from the Kenyan market, while some have been restricted. Some of the pesticides that have been recently reviewed and restricted by the Pest Control Products Board (PCPB) include; 2,4-D Amine, Abamectin, Chlorpyrifos, Dimethoate, Imidacloprid, Omethoate, Propineb, Iprodione, Oxydemeton-methyl, Mancozeb and Permethrin. Those withdrawn from Kenyan market include Acephate, Chlorothalonil, Pymetrozine, Thiacloprid, Diuron, POE Tallow Amine, Kasugamycin and pyridalyl.

Despite the efforts to manage HHPs in Kenya, information on their use and effects under local conditions remain inadequate.

## The Pesticide Use Study

The **Centre for Environment Justice and Development (CEJAD)** undertook a study on the use and impacts of pesticides in Kenya, covering three regions namely, Kajiado, Kirinyaga and Nakuru. Specifically, the study sought to; (i) Identify pesticides and HHPs used by farmers in the three areas of the study (ii) Document the practices employed by farmers in the use and management of pesticides, and (iii) Assess the health and environment effects of pesticides in the farming communities. The study employed a Mixed Method Design employing both qualitative and quantitative approaches. The Community-based Pesticide Action Monitoring (CPAM) methodology was employed in this study. CPAM is a research method that actively involves communities in documenting and raising awareness about the dangers of pesticides and their effects on both human health and the environment. Data was collected using a structured questionnaire for a period of three months (June to September, 2024). A total of 1523 people were interviewed from the 3 counties. In Kajiado county, the study focused on Kajiado South sub-county. In Kirinyaga county, the study targeted the four sub-counties: Kirinyaga central, Mwea East, Kirinyaga East, and Mwea West. In Nakuru county the study covered Naivasha and Gilgil sub-counties.

## Key Study Findings

Of the 527 products used by the respondents, 31.7% were identified as HHPs. Majority of these products were fungicides 52.1% followed by insecticides (40.1%) and herbicides (7.2%). The study results showed that Kajiado county had the highest number, 102 (35.5%) of HHPs products identified followed by Kirinyaga with 69 (31.1%) and Nakuru had the least 37 (19.1%). In total, 30 (15.6%) pesticides active ingredients were used across the three study areas.

Nearly half (42.9%) of the identified HHPs are classified as reproductive toxicants (GHS Category 1B). This implies that they can adversely affect the sexual function and fertility in adult males and females, as well as cause developmental toxicity in the offspring (cause serious harm to the developing embryo or foetus. Another 40% are classified as to human carcinogen (GHS Category 1B). A further analysis of the pesticides established that about 42.5% of the products were highly toxic to bees and/or aquatic organisms, birds, earthworms or mammals. 29 pesticide active ingredients were registered in these products, representing 15.1% of all the active ingredients.

Analysis of the pesticides used by the respondents revealed that 37.5% of the 192 identified pesticide active ingredients were banned in other countries across the globe (PAN, 2022) for health and environment reasons. Equally, looking at active ingredients, the study reveals that 23.6% of pesticides had active ingredients banned within their countries of origin. The availability of such products in the

Kenyan market raises issues of unethical trade. Governments should prohibit the export of chemicals they have prohibited nationally in line with the Global Framework on Chemicals. These pesticides should be phased out in Kenya in line with the Section 12(2), Standards Act (cap 496) of the Business Laws (Amendment) Act, 2024.

From the identified products, 91% were registered in Kenya by Pest Control Products Board (PCPB), 5.0% were registered in Tanzania by Tanzania Plant Health and Pesticides Authority (TPHPA) while 4% were not known where or whether they are registered. About 22% of the total products found in Kajiado county and 1% of products found in Kirinyaga were registered in Tanzania, indicating illegal cross border flow of pesticides, and need for close collaboration between countries to curb this problem.

The study revealed that more than half (62.2%) of the respondents had received training on pesticide use while another 37.8% had not received any training. Kajiado and Kirinyaga recorded higher number of respondents with no training on pesticide use (43.7% and 45% respectively) while Nakuru recorded the highest number of respondents (88%) who had received training.

In terms of safe pesticide use practices, about 98.4% of sampled respondents in Nakuru, 55.5% in Kirinyaga and 54.3% in Kajiado alluded to using PPES while using pesticides. The figures show that a significant number of workers in Kajiado and Kirinyaga counties, (45.7% and 44.5% respectively) did not use PPEs. In addition, even those who used PPEs did not wear appropriate and full protective gears. The widely used PPEs included boots/shoes, overalls, gloves and facemasks.

Other bad pesticide use practices identified included cases of workers re-entering sprayed fields before lapse of safe period. Nakuru county had the highest number of respondents (53.5%) re-entering the field on the same day after pesticide spraying followed by Kajiado at 31%. Burning of unwanted pesticides was the most common form of disposal. Kajiado (66%) and Kirinyaga (42%) reported the highest number of respondents who burned left over and unwanted pesticides compared to Nakuru (22.4%). Nakuru reported the highest proportion of respondents who returned empty pesticide containers to the company/distributor (54.2%).

The study established bad practices in cleaning and washing of spraying equipment by the respondents, increasing the risk of exposure to pesticide residues and contamination of the environment. The most common washing facilities were taps, irrigation drains, water containers, river, wells, ponds/lakes and others included designated areas such as soak pits and shower rooms.

In terms of effects of chemical exposure, the study reveals that 544 (36.4%) of the respondents reported they had experienced adverse effects following exposure to pesticides. The most common symptoms reported included; skin rashes, headaches, nausea, vomiting, dizziness, excessive salivation, diarrhoea, sleeplessness, difficulty in breathing and excessive sweating. Kirinyaga (41.3%) and Nakuru (40.6%) counties recorded the highest rate of the respondents who reported adverse effects from pesticide exposure compared to Nakuru (27.4%). 16.5% of the respondents in the 3 counties reported a family member suffered from chronic illnesses. The common illnesses quoted include cancer, diabetes, liver disease, learning difficulties, kidney disease and development disorders. This calls for the need to further investigate the causal link between pesticide exposure and chronic illnesses in the study areas.

## Conclusions and Recommendations

Our study shows that pesticide poisoning is a problem among smallholder farmers and farm workers in Kenya. In addition, the use of HHPs among farmers is common in Kenya without proper protective gears. Judicious use of pesticides is also a problem amongst farmers, increasing the risk of exposure to people and environment. The Kenya's pesticides legal regime still allows for registration of pesticides banned in other countries for health and environment concerns thus shifting the burden of managing their risks to vulnerable farmers.

To reduce the risks and impacts of pesticides, particularly HHPs, the study makes the following recommendations;

- » The Ministry of Agriculture and Pest Control Products Board (PCPB), in collaboration with ministries of health and environment and stakeholders should review and formulate policies and laws to eliminate HHPs and promote safe and affordable alternatives.
- » PCPB should review the registration of all identified highly hazardous pesticides (HHPs) and those banned in other jurisdictions but still permitted in Kenya, with a view to prohibiting or restricting their use where appropriate to protect human health and the environment.
- » The relevant government Ministries, Departments and Agencies (MDAs) and stakeholders should support farmers to transition to agricultural production using safer and sustainable pest management practices through trainings in safer alternatives such as agroecology, Integrated Pest Management (IPM), and biopesticides, awareness and educational programs.
- » PCPB should assess the impacts of and review registration of pesticides identified to be highly toxic to bees and aquatic organisms with the view of prohibiting or restricting their use as appropriate.
- » PCPB and National Environment Management Authority (NEMA), in partnership with the pesticide industry, should establish a national Extended Producer Responsibility (EPR) scheme for the safe management of pesticide containers and obsolete pesticides, in accordance with the 2024 EPR regulations.
- » The Ministries of Agriculture, Environment, and Health should conduct regular post-registration monitoring and surveillance of pesticide use and its impacts to identify severe and irreversible effects under local conditions, and to support evidence-based decision-making.
- » The Ministry of Agriculture and the PCPB, in collaboration with the Ministries of Health and Environment, should establish a coordinated mechanism to strengthen inter-ministerial collaboration and enhance stakeholder engagement in the management of pesticides and HHPs in Kenya.
- » The Ministry of Labor and Social Protection, through the Directorate of Occupational Safety and Health Services (DOSHS), should implement a health monitoring program for flower industry workers in Kenya to identify and protect those exposed to harmful pesticides in the workplace.
- » DOSHS should establish a national database to centralize all biomonitoring reports conducted on flower industry workers by companies in Kenya. This will enhance transparency, improve access to critical health information, and support informed decision-making for worker protection.
- » There is need for collaboration between Kenya and Tanzania to curb illegal cross-border trade in pesticides. PCPB in collaboration Kenya Revenue Authority (KRA) should sensitize and train border control officers in identifying and curbing trade of illegal pesticides at border points.



# Table of Contents

|          |                                                             |           |
|----------|-------------------------------------------------------------|-----------|
| <b>1</b> | <b>INTRODUCTION</b>                                         | <b>9</b>  |
| 1.1      | Background                                                  | 9         |
| 1.1.1    | Global action on highly hazardous pesticides                | 9         |
| 1.1.2    | Kenya scenario                                              | 10        |
| 1.2      | Community Monitoring of Use and Impacts of Pesticides Study | 10        |
| 1.2.1    | Study objectives                                            | 11        |
| 1.2.2    | Study area and context                                      | 11        |
| <b>2</b> | <b>STUDY APPROACH AND METHODOLOGY</b>                       | <b>12</b> |
| 2.1      | Study Approach                                              | 12        |
| 2.2      | Methodology                                                 | 12        |
| 2.2.1    | Target group and selection of respondents                   | 12        |
| 2.2.2    | Data analysis and presentation                              | 13        |
| 2.3      | Identification of HHPs                                      | 13        |
| 2.4      | Limitations                                                 | 14        |
| <b>3</b> | <b>STUDY FINDINGS</b>                                       | <b>15</b> |
| 3.1      | Socio-demographic Characteristics of Respondents            | 15        |
| 3.2      | Characterization of Labour                                  | 15        |
| 3.3      | Identified Pesticides and HHPs                              | 16        |
| 3.3.1    | Use of pesticides by respondents                            | 16        |
| 3.3.2    | Activities involving use of pesticides                      | 17        |
| 3.3.3    | Frequency and duration of pesticide use                     | 18        |
| 3.3.4    | Reported pesticides and active ingredients                  | 19        |
| 3.4      | Identified Highly Hazardous Pesticides (HHPs)               | 24        |
| 3.5      | Pesticides Banned in Other Jurisdictions                    | 28        |
| 3.5.1    | Unethical trade                                             | 30        |
| 3.6      | Manufacturers and Country of Origin                         | 31        |
| 3.6.1    | Country of authorization                                    | 32        |
| 3.7      | Pesticide Use Practices                                     | 33        |
| 3.7.1    | Type of application equipment and frequency of spraying     | 33        |
| 3.7.2    | Use of personal protective clothing (PPEs)                  | 33        |
| 3.7.3    | Re-entry to the field after pesticide spraying              | 33        |
| 3.8      | Pesticides Disposal, Storage and Cleaning Practices         | 34        |
| 3.8.1    | Disposal practices                                          | 34        |
| 3.8.2    | Storage practices                                           | 35        |
| 3.8.3    | Washing and cleaning of equipment                           | 35        |
| 3.8.4    | Washing facilities                                          | 36        |
| 3.9      | Spray Drifts                                                | 36        |
| 3.9.1    | Distance lived from the farm                                | 36        |
| 3.9.2    | Wind direction                                              | 36        |
| 3.10     | Access to Information, Trainings and Awareness of Hazards   | 37        |
| 3.10.1   | Pesticides labels                                           | 37        |
| 3.10.2   | Training on pesticide use and handling                      | 38        |
| 3.10.3   | Purchase/use of Obsolete Pesticides                         | 39        |
| 3.10.4   | Decanting of pesticides                                     | 39        |

|                                             |           |
|---------------------------------------------|-----------|
| 3.10.5 Spillages                            | 39        |
| <b>3.11 Health Effects</b>                  | <b>40</b> |
| 3.11.1 Reported adverse effects             | 40        |
| 3.11.2 Chronic illnesses at household level | 40        |
| 3.11.3 Pesticides and suicide               | 41        |
| <b>3.12 Environmental Effects</b>           | <b>42</b> |
| 3.12.1 Poisoning of wildlife                | 42        |
| <b>4 CONCLUSION AND RECOMMENDATIONS</b>     | <b>43</b> |
| 4.1 Conclusions                             | 43        |
| 4.2 Recommendations                         | 44        |
| <b>5 REFERENCES</b>                         | <b>45</b> |
| <b>6 ANNEXES</b>                            | <b>46</b> |

# 1 INTRODUCTION

## 1.1 Background

The use of pesticides to control pests and diseases in Kenya has doubled since 1990. In 2022, total pesticides use in agriculture was 3.70 million tonnes (Mt) of active ingredients, marking a 4% increase with respect to 2021, a 13% increase in a decade. Kenya used 5083 tonnes of active ingredients, a slight decline from 5465 tonnes in 2021(FAO 2024).

The use of pesticides comes with numerous health, environmental, and social implications, especially for vulnerable groups. Exposure to pesticides can cause several health effects ranging from acute poisonings to chronic illnesses. Acute poisonings of pesticides can present as nausea, vomiting, headache, and eye and skin irritation, among others. Pesticides have been linked with chronic effects such as birth defects, cancers, damage to the brains of small children, reduced intellectual capacity, neurological conditions, infertility, and endocrine disorders including diabetes, etc. Globally, 385 million cases of unintentional acute pesticides poisoning are reported every year, resulting in around 11,000 fatalities, with about 44% of farmers experiencing poisoning by pesticides annually (Boedeker et al, 2020).

A recent study by WHO reveals that more than 720,000 people die by suicides annually<sup>1</sup>, with pesticide self-poisoning accounting for 14–20% of all global suicide cases, especially in low- and middle-income countries<sup>2</sup>, due to access to highly hazardous pesticides. When released to the environment, pesticides can persist for decades, posing threats to the entire ecological system. The resultant contamination of air, surrounding soil, and water sources causes massive environmental disruptions such as loss of biodiversity, including birds, and destroying beneficial insect populations that act as natural enemies of pests and pollinators, among others.

Most of the harms caused by pesticides are linked to a relatively small number of pesticides in use, categorized as highly hazardous pesticides (HHPs). HHPs are defined as pesticides that present particularly high levels of acute or chronic hazards to health or environment according to internationally accepted classification systems such as WHO or Globally Harmonized System (GHS), or their listing in relevant binding international agreements or conventions (FAO and WHO 2013, 2016). In addition, pesticides that appear to cause severe or irreversible harm to health or the environment under conditions of use in a country may be considered to be and treated as highly hazardous.” According to the Food and Agriculture Organization (FAO), these pesticides constitute between 6–10% registered pesticides (FAO 2021). Therefore, acting on this small number of pesticides would remove many of the harms caused by pesticides globally (UNEP, 2023).

### 1.1.1 Global Action on Highly Hazardous Pesticides

Highly Hazardous Pesticides (HHPs) first received attention in 2006 when the FAO Council called for progressive phase out of HHPs (FAO, 2006). In 2008, the criteria for identifying HHPs was recommended by the FAO/WHO Joint Meeting on Pesticide Management (JMPM) (FAO/WHO, 2016). In 2015, HHPs was recognized as an issue of international concern by stakeholders at the Forth session of the International Conference on Chemicals Management, and called for concerted efforts to address them<sup>3</sup>.

To guide countries in addressing HHPs, FAO and WHO developed guidelines on HHPs in 2016. These guidelines outline three steps process for HHPs risk reduction, including HHPs identification, risks and needs assessment, and mitigation options (FAO and WHO, 2016). More recent efforts to address HHPs globally came about between 2022 and 2024. In 2022, the Kunming-Montreal Global Biodiversity Framework (GBF) adopted by governments at the 14th Meeting of the Conference of Parties (COP15) to the Convention on Biodiversity (CBD), included a target to reduce pollution risks and negative impacts of pollution from all sources by 2030, including from pesticides and high hazardous chemicals<sup>4</sup>.

1 <https://www.who.int/news-room/fact-sheets/detail/suicide>

2 <https://www.who.int/news/item/17-12-2020-new-study-highlights-cost-effectiveness-of-bans-on-pesticides-as-a-suicide-prevention-strategy#:~:text=Suicide%20is%20a%20major%20global,access%20to%20highly%20hazardous%20pesticides>

3 See resolution IV/3 in Annex 1 of the report of the Fourth session of the International Conference on Chemicals Management (ICCM4). Available: [https://www.saiem.org/Portals/12/documents/meetings/ICCM4/doc/K1606013\\_e.pdf](https://www.saiem.org/Portals/12/documents/meetings/ICCM4/doc/K1606013_e.pdf).

4 See target 7 of the Kunming-Montreal Global Biodiversity Framework (GBF) available at: <https://www.cbd.int/doc/decisions/cop-15/>

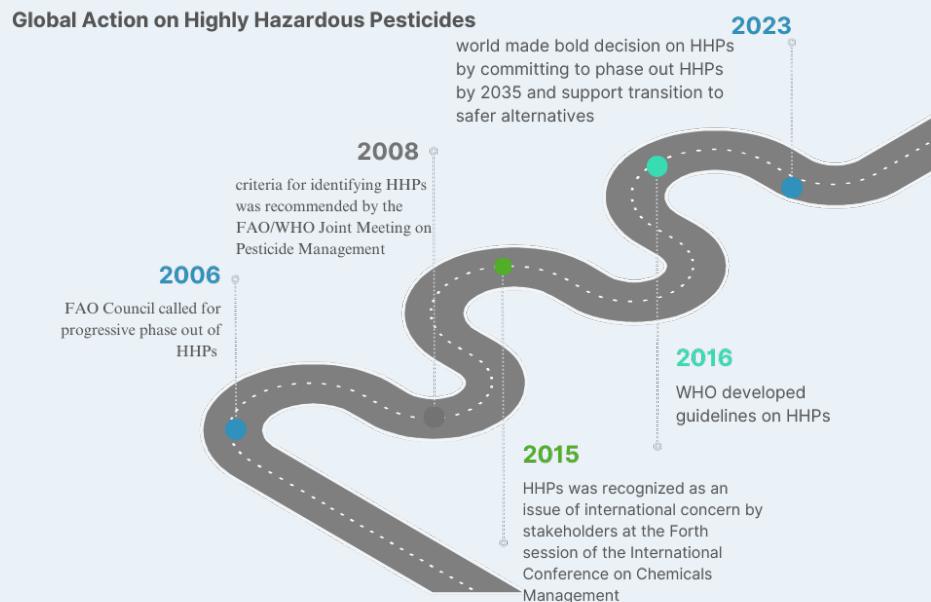



Figure 1: global action on highly hazardous pesticides

In 2023, the world made bold decision on HHPs by committing to phase out HHPs by 2035 and support transition to safer alternatives as one of the key targets of the Global Framework on Chemicals: For a planet free of harm from chemicals and wastes<sup>5</sup>. To facilitate global action on HHPs, the Fifth session of the International Conference on Chemicals Management (ICCM5) adopted a resolution to establish a Global Alliance on HHPs. The sixth session of the United Nations Assembly (UNEA 6) in 2014 also adopted a resolution encouraging its Member States and all relevant stakeholders to support the work of the alliance, and to become members of the alliance.

At the regional level, there are different initiatives aimed at addressing HHPs. The Southern African Development Community (SADC) has adopted a harmonized regional strategy to phase out HHPs. East Africa Community (EAC) is also in the process of developing a strategy to guide phase out of HHPs in the region.<sup>6</sup>

### 1.1.2 Kenya scenario

Whereas Kenya has no publicly available list of declared HHPs, other stakeholders have identified some pesticides as HHPs in Kenya. Route to Food Initiative identified 195 pesticide products as HHPs using the Pesticide Action Network (PAN) International list of HHPs (Silke Bollmohr, 2023). They estimate that about 76% of the volume of pesticides used by farmers in Kenya are considered as HHPs.

The government of Kenya has also taken efforts to review and address potential HHPs, leading to a number of pesticides being withdrawn from the Kenyan market, while some have been restricted. This follows widespread recognition and call by stakeholders and the public to phase out HHPs from use in Kenya. Some of the pesticides that have been recently reviewed and restricted by the Pest Control Products Board (PCPB) include; 2,4-D Amine, Abamectin, Chlorpyrifos, Dimethoate, Imidacloprid, Omethoate, Propineb, Iprodione, Oxydemeton-methyl, Mancozeb and Permethrin. Those withdrawn from Kenyan market include Acephate, Chlorothalonil, Pyrethroid, Thiocloprid, Diuron, POE Tallow Amine, Kasugamycin and pyridalyl.

Despite the efforts to manage HHPs in Kenya, information on their use and effects under local conditions remain inadequate.

cop-15-dec-04-en.pdf

5 See target A7 of the Global Framework on Chemicals available at: <https://www.chemicalsframework.org/page/strategic-objectives-and-targets>

6 <https://www.fao.org/pest-and-pesticide-management/pesticide-risk-reduction/reducing-global-risk-from-hhp/fao-and-hhps/en/>

## 1.2 Community Monitoring of Use and Impacts of Pesticides Study

CEJAD undertook a study on the use and impacts of pesticides in Kenya, covering three regions namely, Kajiado, Kirinyaga and Nakuru. The study was guided by the need for targeted studies on use and effects of pesticides in the country. This is critical in bolstering efforts by stakeholders to successfully identify and phase out HHPs in Kenya.

### 1.2.1 Study objectives

The aim of the study was to document the use and impacts of pesticides in the 3 counties in Kenya. Specifically, the study sought to;

- i. Identify pesticides and HHPs used by farmers in the three areas of the study
- ii. Document the practices employed by farmers in the use and management of pesticides
- iii. Assess the health and environment effects of pesticides in the farming communities

### 1.2.2 Study area and context

#### a) Kajiado county

In Kajiado county, the study was conducted in Kajiado South constituency commonly known as Loitoktok. It covered 13 villages spread across 4 wards in Loitoktok. The wards included Kimana, Imbirikani, Kuku and Entonet/Lenkisin. The study area comprised mainly of smallholder and small-scale commercial farmers. Major crops grown in the area included tomatoes, onions, kales, cabbages, and capsicum. Flowers are also grown in the area to a small extent.

The study area lies within the Amboseli ecosystem which comprises Amboseli National Park and 6 ranches. The Park is one of the few UNESCO sites in Kenya and has a ranging biological diversity including habitat, landscape, big tusker elephants, Maasai Giraffe, an Array of ungulates, large carnivores, rich birdlife, and wildlife corridors. The Park is one of the 62 Important Bird Areas in Kenya and is globally recognized as a significant site for bird conservation.

Over the years, Amboseli Ecosystem has undergone a lot of land subdivisions, resulting in a growing number of commercial agricultural activities in the area. Kajiado county is found in Rift valley region of Kenya. It borders Nairobi and to its south borders the Tanzanian regions of Kilimanjaro and Arusha. Kajiado county features a variety of wildlife as it holds the Amboseli National Park.

#### b) Kirinyaga county

In Kirinyaga county, the study was conducted in Kirinyaga Central, Kirinyaga East, Mwea East and Mwea West sub-counties, and covered a total of 80 villages spread across 22 Wards (Table 2). Kirinyaga county is located south of Mt Kenya and in the central region of Kenya. The main economic activity of Kirinyaga county is agriculture which is largely done on a small scale due to land scarcity and high population. The most common crops grown in the study area included kales, tomatoes, cabbages and pepper. In addition, the county is also best known for rice production in Mwea Irrigation Scheme.

#### c) Nakuru county

The study was conducted in Naivasha and in Gilgil constituencies in Nakuru county. Nakuru county is located in the Rift valley region of Kenya, and hosts various tourist attractions such as lakes (Lake Nakuru, Lake Naivasha, Lake Elementaita) and craters (e.g Menengai crater). It is also rich in agriculture activities.

The study covered 9 villages across 6 wards namely; Lake View, Hells Gate, Viwandani, Olkaria, Malewa West, Gilgil and Malewa East. Naivasha constituency hosts natural resources such as Lake Naivasha, Geothermal wells in Olkaria and Hells Gate. Naivasha. Among the major economic activities in Naivasha are flower farming and horticulture. Gilgil constituency located between Naivasha and Nakuru hosts the Gilgil River. The study mostly targeted workers in the flower farms around Naivasha.

## 2 STUDY APPROACH AND METHODOLOGY

### 2.1 Study Approach

The study employed a Mixed Method Design employing both qualitative and quantitative approaches. The Community-based Pesticide Action Monitoring (CPAM) methodology developed by Pesticide Action Network Asia Pacific (PANAP) was employed in this study. CPAM is a research method that actively involves communities in documenting and raising awareness about the dangers of pesticides and their effects on both human health and the environment. This approach empowers community members to conduct research while encouraging organizing and action.

### 2.2 Methodology

Data was collected through face-to-face interviews with the respondents using a structured questionnaire presented on a mobile device. The questionnaire was administered by community leaders and farmers through Kobo Collect application. This data was analysed using SPSS and Microsoft excel. Prior to data collection, 10 community leaders and farmers were trained on CPAM and the questionnaire. They were also equipped with knowledge on the types and impacts of pesticides. Data was gathered within a period of 3 months (June to September, 2024).

#### 2.2.1 Target group and selection of respondents

The study targeted smallholder farmers and farm workers in the horticultural sector, mainly vegetable and flower production, and focused on areas where pesticides were used based on intensive agricultural activities.

Purposive sampling was used to select the villages and wards while participants were selected randomly. A total of 1523 people were interviewed from the 3 counties.

In Kajiado county, the study focused on Kajiado South sub-county. A total of 613 people responded to the study, mainly from Kimana and Kuku wards, as summarised in table 1 below:

Table 1: Distribution of Respondents in Kajiado South Subcounty

| Ward             | Village                                                             | No of Respondents | Percentage   |
|------------------|---------------------------------------------------------------------|-------------------|--------------|
| Kimana           | Oltepesi, Oloile, Namelok, Tikondo, Kirasha, Enchoro, Enkaji Naibor | 290               | 47.3         |
| Imbirikani       | Isinet, Enkaji Naibor, Kaleriswa, Kirasha, Nemelok                  | 71                | 11.6         |
| Kuku             | Shurie                                                              | 238               | 38.8         |
| Entonet/Lenkisin | Namelok OG                                                          | 14                | 2.3          |
| <b>Total</b>     |                                                                     | <b>613</b>        | <b>100.0</b> |

In Kirinyaga county, the study targeted the four sub counties: Kirinyaga Central, Mwea East, Kirinyaga East, and Mwea West. A total of 600 respondents were reached as summarised in the table 2 below:

Table 2: Summary of Respondents Distribution in Kirinyaga County

| Sub-county        | Wards                                                       | No of Respondents | Percentage   |
|-------------------|-------------------------------------------------------------|-------------------|--------------|
| Kirinyaga Central | Inoi, Kangai, Kanyekini, Kerugoya, Mutira Mutithi, Nyangati | 277               | 46.2         |
| Kirinyaga East    | Baragwi, Kabare, Kangai, Kanyekini, Karumandi, Kerugoya     | 66                | 11.0         |
| Mwea East         | Baragwi, Gathigiriri, Kangai, Mutithi, Ngariama, Nyangati   | 192               | 32.0         |
| Mwea West         | Kangai, Murinduho, Nyangati                                 | 65                | 10.8         |
| <b>Total</b>      |                                                             | <b>600</b>        | <b>100.0</b> |

In Nakuru county the study covered Naivasha and Gilgil sub-counties. A total of 310 respondents were interviewed as summarised in the table 3 below:

Table 3: Summary of Respondents distribution in Nakuru County

| Subcounty | Ward        | Village        | No of Respondents | Percentage |
|-----------|-------------|----------------|-------------------|------------|
| Naivasha  | Lake View   | Kihoto, Manera | 95                | 30.6       |
|           | Hells Gate  | Sanctuary      | 76                | 24.5       |
|           | Viwandani   | Kanjo          | 45                | 14.5       |
|           | Olkaria     | Kwa Muhia, DCK | 39                | 12.6       |
|           | Malewa West | KCC            | 33                | 10.6       |
|           | Malewa East | Panda          | 7                 | 2.3        |
|           | Gilgil      | Gilgil         | 15                | 4.8        |
| Total     |             |                | 310               | 100.0      |

## 2.2.2 Data analysis and presentation

Data was cleaned and analyzed using descriptive statistics. The data has mainly been presented using tables, charts and graphs. The statistical data was augmented with qualitative data from interactions with the respondents.

## 2.3 Identification of HHPs

HHPs were identified using the eight HHPs criteria established by the FAO and WHO Joint Meeting on Pesticide Management (JMPM Criteria).<sup>7</sup>

### FAO/WHO JMPM HHPs Criteria



Figure 2: FAO/WHO JMPM HHPs Criteria

The report relied on information from reputable sources to classify pesticides under various criteria. For Hazard Classifications, the report relied on information from the WHO – International Agency for Research On Cancer (IARC) – Agents classified by the IARC monographs, OECD eChemPortal – Classification Search, European Chemicals Agency (ECHA) – C&L Inventory, US EPA carcinogenicity evaluation – Database for Chemical Information, WHO – Classification of Pesticide by Hazard and

<sup>7</sup> <https://www.fao.org/pesticide-registration-toolkit/special-topics/highly-hazardous-pesticides-hhp/identification-of-hhps/en/>

For pesticide listed in the Conventions, the report relied on lists provided in the Annex III of the Rotterdam Convention, Annex A & B of the Stockholm Convention. For listing under Criterion 8, the report heavily relied on decisions by the Pest Control Products Board.

The Pesticide Action Network (PAN) International list of banned pesticides and list of HHPs were also relied upon in identifying HHPs and pesticides banned or restricted in other jurisdictions (PAN International, 2024a; PAN International, 2024b).

## 2.4 Limitations

While this report provides information about pesticides and HHPs used in the three study locations, it does not provide information on the volume of pesticides or HHPs used. In addition, it does not provide information linking the reported symptoms of poisonings with specific pesticides.

In regards to identification of HHPs, the report relied heavily on criteria 1-7. Criterion 8 was used to a limited extent due to lack of information on the local evidence linking identified pesticides with high incidence of severe or irreversible adverse effects on human health or the environment. However, the report has identified pesticides that could be classified under criterion 8 based on their environmental hazards.

### 3 STUDY FINDINGS

#### 3.1 Socio-Demographic Characteristics of Respondents

The study sampled 1,523 respondents across the three study areas. Kajiado county had the highest number of respondents with a total of 613 (40.2%) followed by Kirinyaga with 600 (39.4%) and Nakuru with 310 respondents (20.4%).

Of these respondents, majority were males 1,223 (80.3%) while females were 300 (19.7%). Of the female respondents, 18 (6%) were pregnant while 36 (12%) were breastfeeding at the time of the study.

Majority of the respondents (86.5%) were below 50 years of age. In terms of education levels, 1,413 (92.8%) had attained some formal education, while only 110 (7.2%) of the respondents had never attended school.

Most of the respondents, 955 (62.7%) who participated in the study were farm owners or farmers followed by farm workers at 568 (37.3%). Of the farmers category, 20.8% were investors who had leased land from the locals for farming purposes but were not actively in the farms. The average household size is 4.3 across the study areas. Table 4 below summarises the key socio-demographic characteristics of respondents.

Table 4: Demographic profile of study respondents

|                                   | Kajiado<br>n = 613 | Kirinyaga<br>n= 600 | Nakuru<br>n=310 | Average<br>N=1523 |
|-----------------------------------|--------------------|---------------------|-----------------|-------------------|
| <b>Sex</b>                        |                    |                     |                 |                   |
| Male                              | 35.6%              | 29.0%               | 15.8%           | 80.3%             |
| Female                            | 4.7%               | 10.4%               | 4.6%            | 19.7%             |
| <b>Age</b>                        |                    |                     |                 |                   |
| 18-35yrs                          | 20.6%              | 12.5%               | 8.8%            | 41.9%             |
| 36-50yrs                          | 5.4%               | 20.0%               | 9.3%            | 44.6%             |
| 50-60yrs                          | 3.2%               | 5.8%                | 2.1%            | 11.2%             |
| 60yrs and above                   | 1.7%               | 1.1%                | 0.1%            | 2.3%              |
| <b>Marital status</b>             |                    |                     |                 |                   |
| Single                            | 13.9%              | 6.2%                | 3.0%            | 23.0%             |
| Married                           | 24.6%              | 30.7%               | 15.6%           | 70.8%             |
| Widowed                           | 1.7%               | 2.6%                | 1.8%            | 6.1%              |
| <b>Education level</b>            |                    |                     |                 |                   |
| Never went to school              | 5.9%               | 0.3%                | 1.0%            | 7.2%              |
| Primary school                    | 20.5%              | 10.6%               | 6.3%            | 37.4%             |
| Secondary school                  | 2.1%               | 21.9%               | 9.4%            | 43.4%             |
| Tertiary education                | 1.7%               | 6.6%                | 3.7%            | 12.0%             |
| <b>Average household size (n)</b> | <b>5</b>           | <b>4</b>            | <b>4</b>        | <b>4.3</b>        |

#### 3.2 Characterization of Labour

Among the respondents, only 18.4%, 29.7%, and 1.5% in Kajiado, Kirinyaga, and Nakuru counties were farm owners, while 9.8, 9.1, and 18.4% respectively were farm workers.

The average time spent in the farm working is 4-8 hours a day, while some spend 8-12 hours. In Nakuru and Kajiado farmers/workers work an average of 6 days a week, while in Kirinyaga the average was 5 days a week. In terms of the years, most of the respondents revealed they had worked on the farm between 1-3 years. The duration of working in a farm or company that used pesticides or where pesticides are used may have an implication on the duration of exposure to the adverse effects of pesticides.

Table 5 below summarizes the characterization of labour in the farms.

Table 5: Characterization of labour

|                                                  | Kajiado | Kirinyaga | Nakuru | Average |
|--------------------------------------------------|---------|-----------|--------|---------|
| <b>Role</b>                                      |         |           |        |         |
| Farmer                                           | 18.4%   | 29.7%     | 1.5%   | 49.6%   |
| Farm worker                                      | 9.8%    | 9.1%      | 18.4%  | 37.3%   |
| Partnership                                      | 12.15   | 0.5%      | 0.5%   | 13.1%   |
| <b>Hours in a day worked in the farm</b>         |         |           |        |         |
| Less than 4hrs                                   | 2.0%    | 5.8%      | 0.7%   | 8.5%    |
| 4-8hrs                                           | 20.0%   | 24.8%     | 58.8%  | 58.8%   |
| 8-12hrs                                          | 8.3%    | 7.9%      | 21.7%  | 21.7%   |
| More than 12 hrs                                 | 9.9%    | 1.0%      | 0.1%   | 11.0%   |
| <b>Average days in a week worked in the farm</b> |         |           |        |         |
| No. of days (n)                                  | 6       | 5         | 6      | 5.7     |
| <b>Years worked in the farm</b>                  |         |           |        |         |
| Less than 1yr                                    | 4.3%    | 3.7%      | 2.2%   | 20.2%   |
| 1-3yrs                                           | 12.6%   | 11.4%     | 6.2%   | 30.2%   |
| 3-6yrs                                           | 5.9%    | 9.1%      | 7.2%   | 22.2%   |
| 6-9yrs                                           | 1.7%    | 4.9%      | 3.2%   | 9.8%    |
| 10 years and above                               | 5.7%    | 10.3%     | 1.6%   | 17.6%   |
| <b>Number of employees in the farm</b>           |         |           |        |         |
| 1_10                                             | 36.6%   | 35.4%     | 0.5%   | 72.5%   |
| 10_20                                            | 2.8%    | 3.6%      | 0.9%   | 7.3%    |
| 20_30                                            | 0.7%    | 0.3%      | 1.6%   | 2.6%    |
| Above 30                                         | 0.1%    | 0.1%      | 17.5%  | 17.7%   |

On average, farms in Kajiado and Kirinyaga have 1-10 workers (36.6% and 35.4% respectively), while for Nakuru county majority indicated the farms had more than 30 employees. This may reflect the number of people who may be at risk of exposure to pesticides, especially in farms where they are applied.

### 3.3 Identified Pesticides and HHPs

#### 3.3.1 Use of pesticides by respondents

The study showed that nearly all the respondents (98% of the 1523 respondents in the 3 study areas) used pesticides or worked in farms where pesticides were used or had been used. Of these, 1,212 (81.2%) were men while 280 (18.8%) were women (Table 6). This shows that both men and women were involved in the use of pesticides.

Among the 280 women who were using pesticides, 13 (4.6%) were reportedly pregnant, while another 34 (12.1%) were breastfeeding at the time of the study. This is concerning as women and children are more vulnerable to and are disproportionately impacted by pesticides (Box 1).

Table 6: Distribution of pesticide use by gender and study locations

|               | Kajiado | Kirinyaga | Nakuru | Average |
|---------------|---------|-----------|--------|---------|
|               | n=595   | n=598     | n=299  | N=1492  |
| <b>Gender</b> |         |           |        |         |
| Male          | 35.7%   | 29.5%     | 16.0%  | 81.2%   |
| Female        | 4.2%    | 10.6%     | 4.0%   | 18.8%   |

## Box 1: Impacts of pesticides on women and children

Our study shows that both men and women were using pesticides. However, exposure to pesticides can disproportionately affect men and women. Pregnant and breast-feeding women are considered at higher risk when exposed to pesticide. The study established that of the females who used pesticides or worked in farms where pesticides were used, 4.6% of them were reportedly pregnant. Another 12% were breast feeding. This is concerning as exposure to pesticides by breastfeeding women can potentially expose their children particularly through breast milk. Exposure can also affect their unborn child as pesticides can be passed from the mother to the unborn child. Such exposures may have long-lasting devastating effects on their babies. Pesticide exposure during pregnancy has been linked to adverse pregnancy outcomes and impaired child growth in several epidemiological studies (Berkowitz et al 2003, Paudel et al 2012 and Kartini et al 2019).

### 3.3.2 Activities involving use of pesticides

Our study shows that the respondents from the three study locations were involved in activities that directly put them at high risk of exposure to pesticides. The most commonly reported activities across the three study areas included: spraying pesticides (75.4%); Working in fields where pesticides are being used or have been used (59.9%), and mixing/ loading/decanting pesticides (57.7%). Other activities reported included: Washing equipment used in spraying or mixing pesticides (43.4%); Washing clothes used when spraying or mixing pesticides (42.1%), and purchasing or transporting pesticides (27.7%).

In regard to locations, Kajiado (85%) and Kirinyaga (78.6%) reported a higher number of respondents who were involved in the application/spraying of pesticides compared to Nakuru (59.5%). This was also the case with Mixing/loading/decanting, where Kajiado and Kirinyaga counties recorded 70% and 72.1% respectively. In the flower farms in Naivasha, there are better controls in the use of pesticides compared to the other study locations.

The proportion of respondents who reported working in fields where pesticides were being used or had been used was evenly distributed across three study locations, with Kajiado, Kirinyaga and Nakuru reporting 59%, 59.2% and 61.5% respectively.

Kajiado reported the highest number of respondents who were involved in washing clothes used when spraying or mixing pesticides at 46% compared to Nakuru (41.5%) and Kirinyaga (38.5%). The proportion of respondents involved in washing equipment used in spraying or mixing pesticides was reportedly higher in Kirinyaga (49.2%) and Kajiado (44%) compared to Nakuru (37.2%). This could be due to high controls in the flower farms compared to vegetable farming in Kirinyaga and Kajiado.

While the average number of respondents who were involved in purchasing or transportation of pesticides was less compared to other activities, the proportion of respondents who were involved in this activity was significantly higher in Kirinyaga (58.9%) compared to Kajiado (20%) and Nakuru (4.3%) as shown in table 7 . This could be due to more involvement of respondents in Kirinyaga in the management of the farming process, including purchasing of farm inputs, compared to their counterparts in Nakuru and Kajiado, due to differences in farming systems.

Table 7: Distribution of respondents by activities involving pesticide use and study locations

| Activities                                                          | Responses (%) |           |        |         |
|---------------------------------------------------------------------|---------------|-----------|--------|---------|
|                                                                     | Kajiado       | Kirinyaga | Nakuru | Average |
| Working in fields where pesticides are being used or have been used | 59            | 59.2      | 61.5   | 59.9    |
| Apply/Spray in the field                                            | 85            | 78.6      | 59.5   | 74.4    |
| Washing clothes used when spraying or mixing pesticides             | 46            | 38.5      | 41.8   | 42.1    |
| Washing equipment used in spraying or mixing pesticides             | 44            | 49.2      | 37.1   | 43.4    |
| Mixing/loading/decanting                                            | 70            | 72.1      | 31.1   | 57.7    |
| Purchasing or transporting                                          | 20            | 58.9      | 4.3    | 27.7    |

The study findings also show that both men and women were engaged in activities that involved the use of pesticides, a clear indication of exposure by both genders. More men were involved in all the activities compared to women; however, this may be due to a smaller number of women who responded to the survey. The study shows that of 280 women who used pesticides or worked where pesticides were sprayed, 59.3% were working in fields where pesticides are being used or had been used, 46.4% sprayed pesticides, 39.6% washed clothes used when spraying or mixing pesticides and 38.9% were involved in mixing/loading/decanting pesticides (Table 8). This shows exposure to women through activities that directly and indirectly exposed them to pesticides. Kirinyaga County recorded the highest number of females who were involved in activities that directly or indirectly exposed them to pesticides compared to those in Nakuru and Kajiado.

Table 8: Distribution of activities involving pesticides by gender

| Activities                                                          | Kajiado |        | Kirinyaga |        | Nakuru |        | Average |        |
|---------------------------------------------------------------------|---------|--------|-----------|--------|--------|--------|---------|--------|
|                                                                     | Male    | Female | Male      | Female | Male   | Female | Male    | Female |
|                                                                     | n=533   | n=62   | n=440     | n=158  | n=239  | n=60   | N=1212  | N=280  |
| Apply/ spray in the field                                           | 38.1%   | 13.9%  | 25.8%     | 28.9%  | 12.2%  | 3.6%   | 76.2%   | 46.4%  |
| Mixing/ loading/ decanting                                          | 31.4%   | 10.0%  | 17.3%     | 26.8%  | 6.3%   | 2.1%   | 55.0%   | 38.9%  |
| Working in fields where pesticides are being used or have been used | 25.5%   | 12.5%  | 18.7%     | 28.6%  | 9.5%   | 18.2%  | 53.7%   | 59.3%  |
| Washing the clothes used when spraying or mixing pesticides         | 18.8%   | 11.4%  | 12.5%     | 22.1%  | 8.2%   | 6.1%   | 39.4%   | 39.6%  |
| Washing the equipment used in spraying or mixing pesticides         | 7.6%    | 2.9%   | 4.1%      | 9.3%   | 2.6%   | 5.4%   | 14.4%   | 17.5%  |
| Purchasing or transporting                                          | 2.4%    | 2.1%   | 7.6%      | 15.7%  | 0.7%   | 1.1%   | 10.7%   | 18.9%  |

### 3.3.3 Frequency and duration of pesticide use

The study indicates that most of the farmers frequently used pesticides or worked in farms where pesticides were being sprayed or had been sprayed. Most of the respondents used pesticides on a weekly basis (62.8%), followed by those who used them on a daily basis (21%) and a monthly basis (12.4%). The study further indicates that the majority of the respondents had used pesticides for an average of 6 years (Table 9). The frequency and duration of work with pesticides can influence one's exposure and the impacts of pesticides (Box 2).

In regard to study locations, Kajiado (86.8%) and Kirinyaga (67.3%) reported the highest number of respondents who applied pesticides or worked in farms where pesticides were sprayed or had been sprayed, compared to Nakuru (34.2%). On the contrary, Nakuru (58.7%) reported a significantly higher number of respondents who used pesticides or worked in farms that were sprayed or had been sprayed compared to Kajiado (1.5%) and Kirinyaga (2.7%). The disparities observed in the frequency of use of pesticides between imply that the majority of the respondents in Nakuru (Naivasha) were flower farm workers employed as pesticide applicators or to perform other farm-related activities, such as weeding and harvesting on a daily basis, compared to their counterparts in Kajiado and Kirinyaga.

Table 9: Distribution of respondents by frequency and duration of pesticide use

| Duration                | Responses (%) |           |        |         |
|-------------------------|---------------|-----------|--------|---------|
|                         | Kajiado       | Kirinyaga | Nakuru | Average |
| Average years           | 6             | 7         | 4      | 5.7     |
| <b>Frequency of use</b> |               |           |        |         |
| Daily                   | 1.5           | 2.7       | 58.7   | 21.0    |
| Weekly                  | 86.8          | 67.3      | 34.2   | 62.8    |
| Monthly                 | 7.8           | 28.2      | 1.3    | 12.4    |
| Others                  | 1             | 1.5       | 2.3    | 1.6     |

## Box 2: Impact of duration and frequency of pesticides use on exposure

Frequency and duration worked with pesticides is an important indicator of duration of exposure. Notably, longer periods of exposure to pesticides can lead to long-term health effects. A growing body of evidence has linked long term exposure to pesticides to non-communicable diseases such as cancer, neurological disorders, reproductive disorders and endocrine disruptions (Shekhar et al, 2024) .

### 3.3.4 Reported pesticides and active ingredients

A total of 546 pest control products were being used by respondents at the time of the study. This included 19 (3.5%) biopesticides and 527 (96.5%) pesticides products. All the 19 biopesticides were used in the horticultural farms in Naivasha and Gilgil. Majority of the biopesticides were insecticides. (Table 10)

Table 10: Identified biopesticides

| Product Name        | Active ingredient and concentration                 |
|---------------------|-----------------------------------------------------|
| <b>Fungicides</b>   |                                                     |
| Serenade ASO        | Bacillus amyloliquefaciens strain QST 713 13.96 g/L |
| Regain              | Bacillus subtilis BS-01 1x1010 cfu/ml)              |
| Ozzoneem            | Azadrachtin 1%.                                     |
| <b>Insecticides</b> |                                                     |
| Nimbecidine         | Azadirachtin 0.03%                                  |
| Halt Neo 5% WP      | Bacillus thuringiensis 150g/L                       |
| Helitec             | helicoverpa armigera SNPV8%                         |
| Eco Bb              | Beauveria bassiana strain R444                      |
| Ozoneem 1%EC        | Azadirachtin 1%                                     |
| Flower DS 4EC       | Pyrethrins 4%                                       |
| Pyretone 40EC       | Pyrethrin 4% (w/v)                                  |
| Achook 0.15%EC      | Azadirachtin 0.15% w/w                              |
| Lecatech WP         | Lecanicillium lecanii J27                           |
| Limocide            | Orange oil                                          |
| Magneto 1%EC        | Azadirachtin 0.6% + Matrine 0.4%                    |
| Nemguard 99.9%SC    | Garlic Extract 99.9% v/v                            |
| Prev-am.            | d-limonene 60g/l                                    |
| Pyratop 75EC        | Pyrethrin 75g/L                                     |
| Sustain             | Trichoderma asperellum                              |
| Venenate            | Burkholderia sp. strain A396                        |

### 3.3.4.1 Identified pesticides

Of the 527 pesticide products, 45.7% were insecticides, 36.1% fungicides, 12.5% herbicides, 3.6% growth regulators and 2.1% (adjuvants (others) (Figure 2). The results show that insecticides and fungicides were the most commonly used pesticides in the study areas.

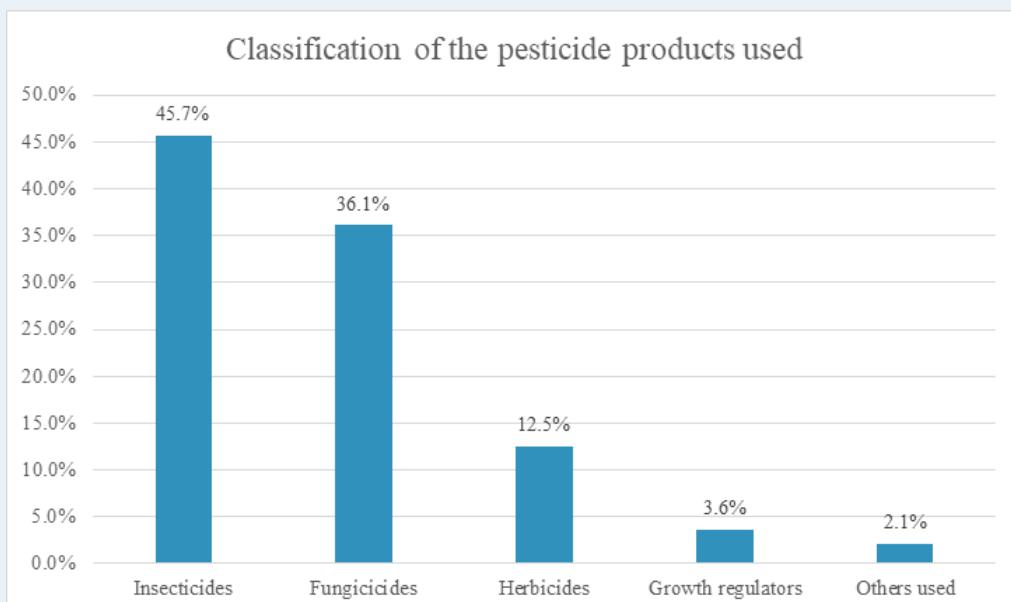



Figure 3: Classification of the pesticide products used

Kajiado county recorded the highest number of products (287) followed by Kirinyaga with 222 products and Nakuru with 194 products. The top 10 products commonly used in the areas are shown in Figure 3.

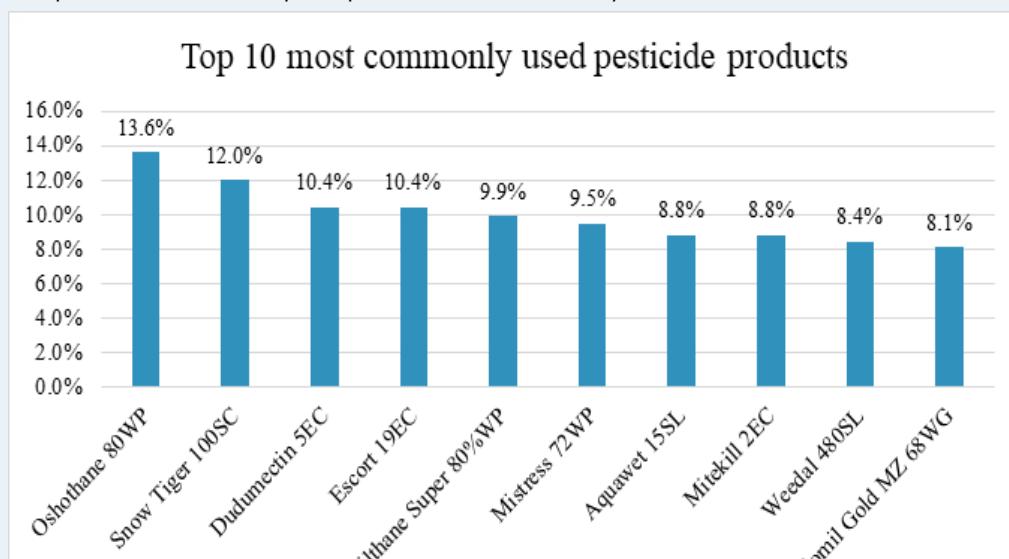



Figure 4: Top 10 most commonly used pesticide products

It was further established that 192 active ingredients were used in the 527 identified pesticide products. Of the 192 active ingredients, 74 (38.5%) were fungicides, 67 (34.9%) were insecticides, 25 (13.0%) were herbicides, 15 (7.8%) were growth regulators and 11 (5.7%) were other pesticides used. Nakuru county recorded 123 active ingredients, Kirinyaga recorded 102 and Kajiado 198 active ingredients. The top 10 most commonly used active ingredients are as shown in figure 4.

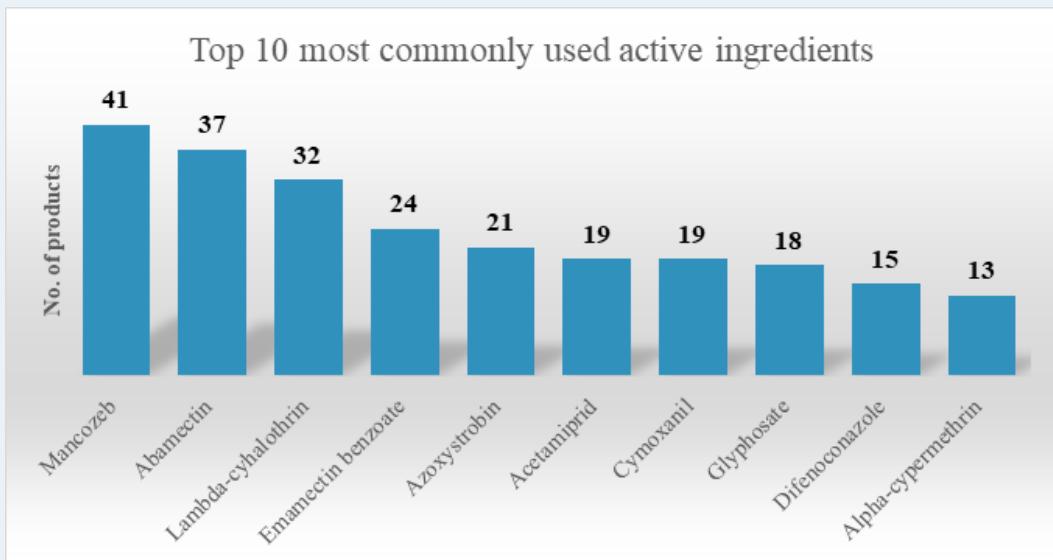



Figure 5: Top 10 most commonly used active ingredients

### 3.3.4.2 Pesticides used to control pests

A total of 241 insecticide products were identified by the study. The table 11 below shows the top 10 pesticides products used to control pests by the respondents and their corresponding active ingredients. The full list of the products and their active ingredients is provided in Annex 1.

Table 11: Top 10 pesticides products used to control pests by the respondents and their corresponding active ingredients

| Product             | Active Ingredient            |
|---------------------|------------------------------|
| 1. Snow Tiger 100SC | Chlorfenapyr 100g/L          |
| 2. Dudumectin 5EC   | Abamectin 2%, Acetamiprid 3% |
| 3. Escort 19EC      | Emamectin benzoate 19g/L     |
| 4. Mitekill 2EC     | Abamectin 20g/L              |
| 5. Degree max 200EC | Alpha-cypermethrin 200g/L    |
| 6. Pentagon 50EC    | Lambda-cyhalothrin 50g/L     |
| 7. Atom 2.5EC       | Deltamethrin 25g/l           |
| 8. Ranger 480EC     | Chlorpyrifos 480g/L          |
| 9. Twiga ace 20SL   | Acetamiprid 200g/L           |
| 10. Voltage 5EC     | Lambda-cyhalothrin 50g/L     |

**2 of the top 10 products** used to control pests were registered in Tanzania and not in Kenya, pointing to illegal transboundary trade of pesticides between the two countries. **These products included Snow Tiger 100 SC and Dudumectin 5EC.**

The figure below shows the 10 commonly used pesticide active ingredients of the 67 identified active ingredients used in the 241 insecticide pesticide products.

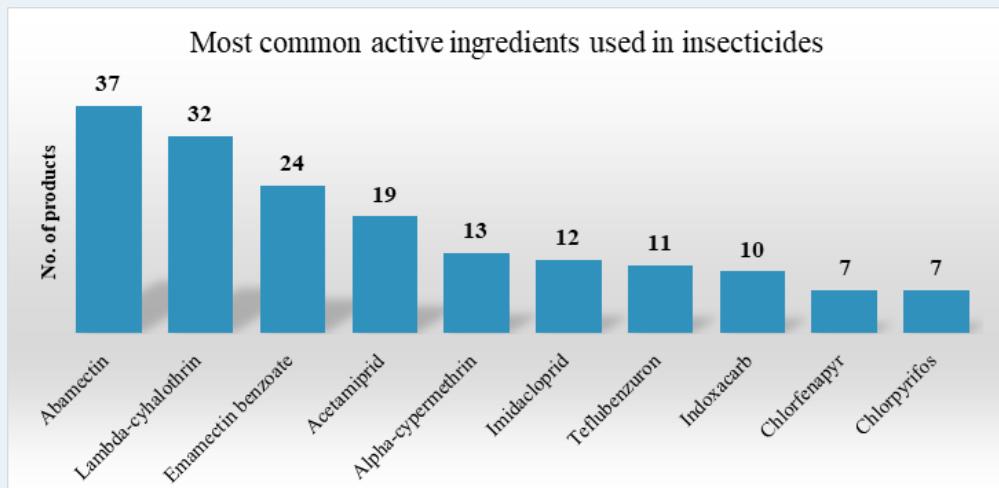



Figure 6: Most common active ingredients used in insecticides

### 3.3.4.3 Pesticides used to control diseases

The study identified 190 fungicides products that were being used by the respondents. The top 10 most commonly used products are shown in the table below. The full list of all the identified fungicide products and their active ingredients is shown in Annex 1.

Table 12: Top 10 most commonly used products

| Product                 | Active Ingredient                     |
|-------------------------|---------------------------------------|
| 1. Oshothane 80WP       | Mancozeb 800g/Kg                      |
| 2. Milthane Super 80%WP | Mancozeb 800g/Kg                      |
| 3. Mistress 72WP        | Cymoxanil 8% + Mancozeb 64%           |
| 4. RidomilGold MZ 68WG  | Metalaxyl-M 40g/Kg + Mancozeb 640g/Kg |
| 5. Botran 500SC         | Carbendazim 500g/L                    |
| 6. Ortiva 250SC         | Azoxystrobin 250g/L                   |
| 7. Victory 72WP         | Metalaxyl 80g/Kg + Mancozeb 640g/Kg   |
| 8. Score 250EC          | Difenoconazole 250g/L                 |
| 9. Isacop 50WP          | Copper Oxychloride 85%                |
| 10. Kenthane 800WP      | Mancozeb 800g/Kg                      |

A total of 74 active ingredients were used in the 190 reported fungicide pesticide products used by the respondents. The most commonly used are as shown in the figure below.

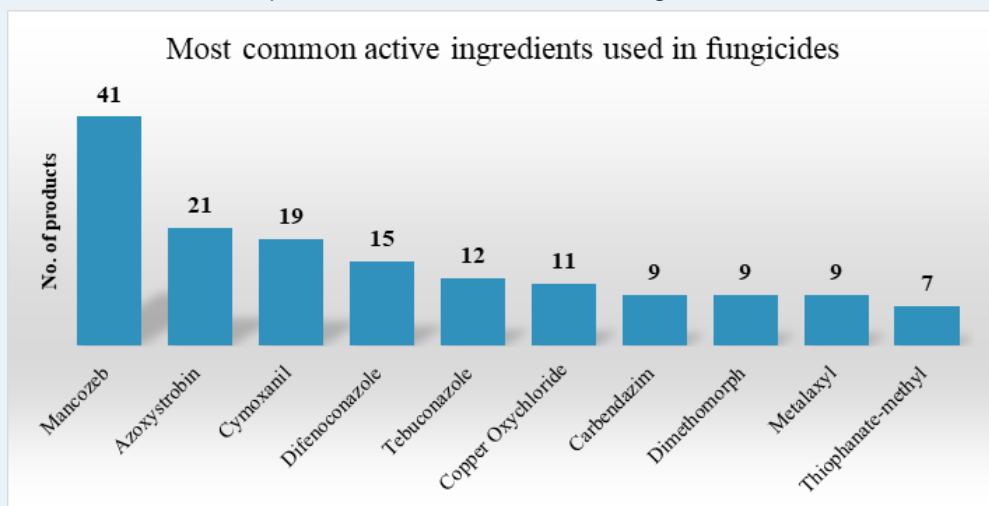



Figure 7: Most common active ingredients used in fungicides

### 3.3.4.4 Pesticides used to kill weeds

66 herbicides products were being used at the time of the study. The table below shows the top 10 commonly used herbicides.

Table 12: Top 10 most commonly used products

| Product              | Active Ingredient                                                      |
|----------------------|------------------------------------------------------------------------|
| 1. Weedal 480SL      | Glyphosate IPA salt 480g/L                                             |
| 2. Parastar 200SL    | Paraquat dichloride 200g/L                                             |
| 3. Kausha 480SL      | Glyphosate 480g/l                                                      |
| 4. Round up 360SC    | Glyphosate acid 360 g/L (express. Potassium salt of glyphosate 441g/L) |
| 5. Pirata 100SC      | Bispyribac-sodium 100g/L                                               |
| 6. Bailout 330EC     | Pendimethalin 330g/L                                                   |
| 7. Kolopa 300OD      | Nicosulfuron 30 g/L + Mesotrione 70 g/L + Atrazine 200 g/L             |
| 8. Tingatinga 380SC  | Atrazine 380g/l                                                        |
| 9. Herbikill 200SL   | Paraquat dichloride 20% w/v                                            |
| 10. Beansclean 480SL | Bentazone 480g/L                                                       |

Further, a total of 25 active ingredients were used in the 66 pesticide products used by respondents to control weeds. The most widely used active ingredients are as shown in the figure below.

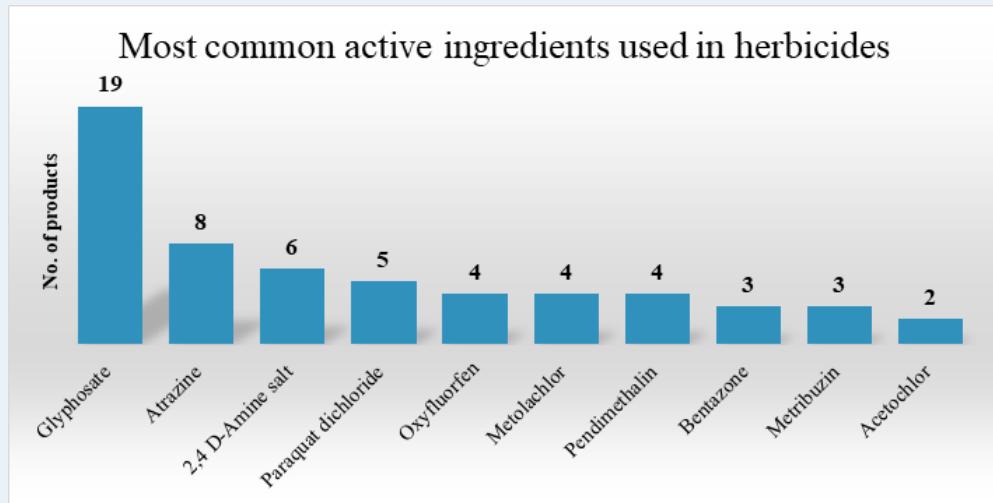



Figure 8: Most common active ingredients used in herbicides

### 3.3.4.5 Pesticides used to regulate growth

19 pesticides used to regulate growth were identified by the study. The most commonly used products included the following;

Table 14: Most commonly used products

| Product              | Active Ingredient                                                                                   |
|----------------------|-----------------------------------------------------------------------------------------------------|
| 1. Tivag 40SL        | Gibberelic Acid 40g/L                                                                               |
| 2. Azatone           | Alpha naphthalene acetic acid                                                                       |
| 3. Flowergal         | Boron 0.0035%, copper 0.088%, molybdenum 0.0012%, zinc 0.088% and alpha naphthalene acetic acid 4.5 |
| 4. Plantone 140SL    | Sodium-1-naphthyl acetic acid 140 g/L                                                               |
| 5. Pluto tembe 200WG | Gibberellic acid 200g/Kg                                                                            |

### 3.3.4.6 Others used

The study identified 11 other pesticides that were used as adjuvants. Adjuvants are applied alongside other specific pesticides as wetters or stickers or spreaders to enhance their performance on crops. The most common products included the following;

Table 15: Pesticides that were used as adjuvants.

| Product         | Active Ingredient                                                          |
|-----------------|----------------------------------------------------------------------------|
| 1. Aquawet 15SL | Nonylphenol ethoxylate 15%                                                 |
| 2. Golden leaf  | Polyalkylene oxide modified heptamethyl trisiloxane 800g/L                 |
| 3. Integra      | Polyalkylene oxide modified heptamethyl trisiloxane 800g/L                 |
| 4. Edmond Gold  | Organosilicone 100%                                                        |
| 5. Silwet gold  | Trisiloxane alkoxylate (organosilicone) 80%w/w + polyalkyleneoxides 20%w/w |

**Aquawet 15 SL, Golden leaf and Integra**, widely used adjuvants are only allowed for use on French beans and roses. These pesticides were mostly used on tomatoes and vegetables, a case of misuse. This might be attributed to limited knowledge of farmers on allowed use of the product as well as limited or lack of advisory services to farmers.

### 3.4 Identified Highly Hazardous Pesticides (HHPs)

This section provides information about HHPs that were used by the respondents. The analysis of HHPs was based on JMPM Criteria for identifying HHPs. Due to inadequate data, the analysis was mainly based on Criteria 1-7 of the JMPM.

Of the 527 products used by the respondents, 167 (31.7%) were identified as HHPs. Majority of these products, 87 (52.1%) were fungicides followed by 68 (40.1%) insecticides and 12 (7.2%) herbicides. The study results showed that Kajiado county had the highest number, 102 (35.5%) of HHPs products identified followed by Kirinyaga with 69 (31.1%) and Nakuru had the least 37 (19.1%).

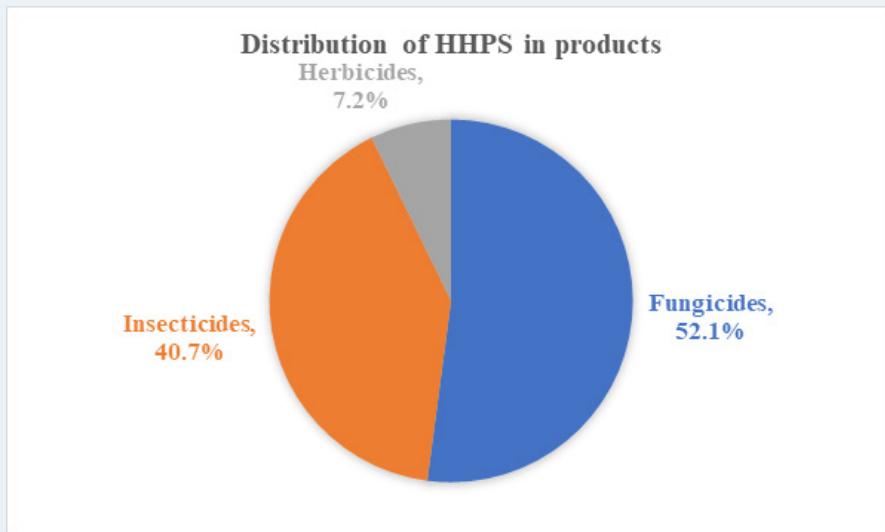



Figure 9: Distribution of HHPs in products

Table 16: Distribution of HHPs in the study areas

|                    | Kajiado     | Kirinyaga  | Nakuru     |
|--------------------|-------------|------------|------------|
|                    | n (%)       | n (%)      | n (%)      |
| Products           | 102 (35.5%) | 69 (31.1%) | 37 (19.1%) |
| Active ingredients | 17 (17.3%)  | 20 (19.6%) | 17 (13.8%) |

In regards to pesticides active ingredients, 30 (15.6%) active ingredients were HHPs. Fungicides (46.7%) constituted most of the active ingredients followed by insecticides (36.7%) and herbicides (16.7%) were the least. (Figure 10). In the 3 counties, the percentage of HHPs in active ingredients was as follows; Kirinyaga had 20 (19.6%), Kajiado had 17 (17.3%) and Nakuru had 17 (13.8%).

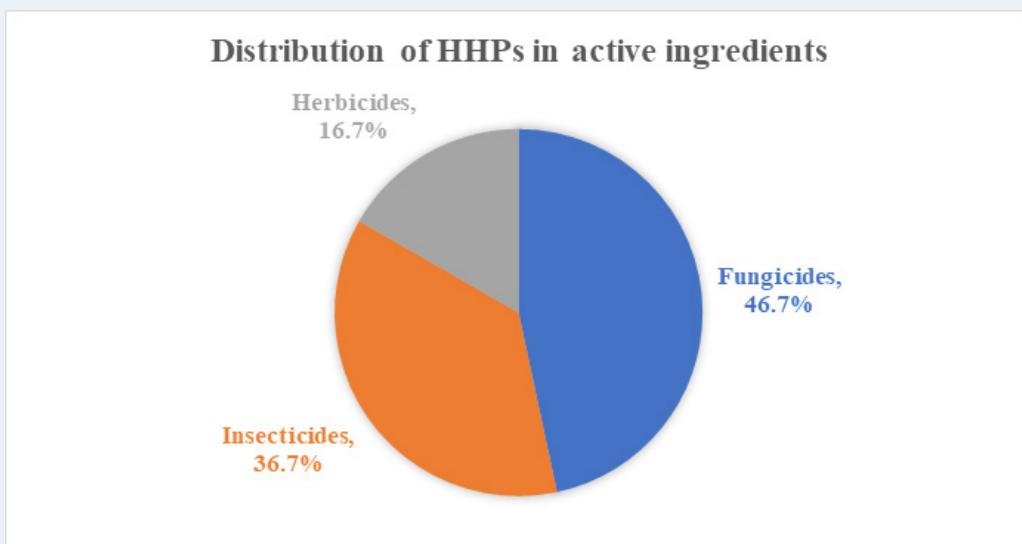



Figure 10: Distribution of HHPs in products

Nearly half (42.9%) of the identified HHPs are classified as reproductive toxicants (GHS Category 1B). This implies that they can adversely affect the sexual function and fertility in adult males and females, as well as cause developmental toxicity in the offspring (cause serious harm to the developing embryo or foetus. Another 40% are classified as to human carcinogen (GHS Category 1B). 14.3 % were identified as HHPs under criterion 8 (high incidences of adverse effects). Placing of the pesticides under this criterion was based on local evidence from literature. Only one pesticide (2.9%) fulfilled the GHS mutagenicity criteria (Figure 11).

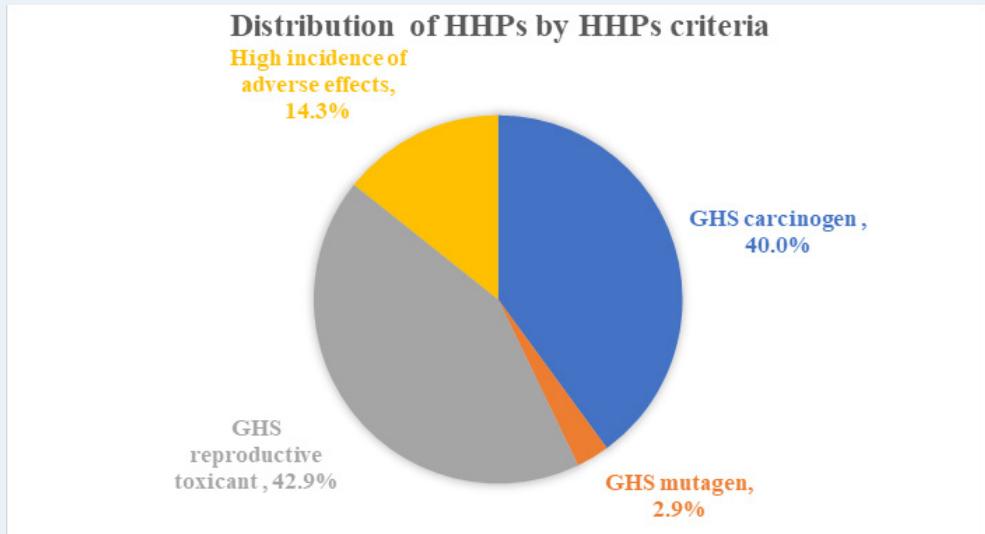



Figure 11: Distribution of HHPs by HHPs criteria



The details of identified HHPs and criteria fulfilled is presented in table 17 below.

Table 17: The details of identified HHPs and criteria fulfilled.

| Active Ingredient      | No. of Products | Where identified           | B1. WHO class | B2. GHS carcinogen Category 1A or 1B | B3. GHS mutagen Category 1A or 1B | B4. GHS reproductive toxicant Category 1A or 1B | B5. Stockholm Convention | B6. Rotterdam Convention (Annex III) | B7. Montreal Protocol | B8. High incidence of adverse effects |
|------------------------|-----------------|----------------------------|---------------|--------------------------------------|-----------------------------------|-------------------------------------------------|--------------------------|--------------------------------------|-----------------------|---------------------------------------|
| <b>Insecticides</b>    |                 |                            |               |                                      |                                   |                                                 |                          |                                      |                       |                                       |
| Abamectin              | 37              | Kajiado, Kirinyaga, Nakuru |               |                                      |                                   |                                                 |                          |                                      |                       | ●                                     |
| Acephate               | 4               | Kajiado, Kirinyaga, Nakuru |               |                                      |                                   | ●                                               |                          |                                      |                       | ●                                     |
| Chlorpyrifos           | 7               | Kajiado, Kirinyaga         |               | ●                                    |                                   |                                                 |                          |                                      |                       | ●                                     |
| Diazinon               | 2               | Kajiado, Kirinyaga         |               | ●                                    |                                   |                                                 |                          |                                      |                       |                                       |
| Ethoprophos            | 1               | Kirinyaga                  |               | ●                                    |                                   |                                                 |                          |                                      |                       |                                       |
| Malathion              | 2               | Kajiado, Kirinyaga         |               | ●                                    |                                   |                                                 |                          |                                      |                       |                                       |
| Paraffin oil           | 2               | Kajiado, Kirinyaga, Nakuru |               | ●                                    |                                   |                                                 |                          |                                      |                       |                                       |
| Thiamethoxam           | 7               | Kajiado, Kirinyaga, Nakuru |               |                                      |                                   |                                                 |                          |                                      |                       | ●                                     |
| Flubendiamide          | 1               | Kajiado, Nakuru            |               | ●                                    |                                   | ●                                               |                          |                                      |                       |                                       |
| Spirodiclofen          | 1               | Kajiado                    |               | ●                                    |                                   | ●                                               |                          |                                      |                       |                                       |
| Dimethoate             | 3               | Kajiado                    |               |                                      |                                   | ●                                               |                          |                                      |                       |                                       |
| <b>2. Fungicides</b>   |                 |                            |               |                                      |                                   |                                                 |                          |                                      |                       |                                       |
| Mancozeb               | 41              | Kajiado, Kirinyaga, Nakuru |               | ●                                    |                                   | ●                                               |                          |                                      |                       |                                       |
| Carbendazim            | 9               | Kajiado, Kirinyaga, Nakuru |               |                                      | ●                                 | ●                                               |                          |                                      |                       |                                       |
| Chlorothalonil         | 4               | Kajiado, Kirinyaga         |               | ●                                    |                                   |                                                 |                          |                                      |                       |                                       |
| Dimethomorph           | 9               | Kirinyaga, Nakuru          |               |                                      |                                   | ●                                               |                          |                                      |                       |                                       |
| Propiconazole          | 3               | Kajiado, Kirinyaga         |               |                                      |                                   | ●                                               |                          |                                      |                       |                                       |
| Thiophanate-methyl     | 7               | Kajiado, Kirinyaga         |               | ●                                    |                                   |                                                 |                          |                                      |                       |                                       |
| Iprovalicarb           | 1               | Nakuru                     |               | ●                                    |                                   |                                                 |                          |                                      |                       |                                       |
| Kresoxim-methyl        | 1               | Nakuru                     |               | ●                                    |                                   |                                                 |                          |                                      |                       |                                       |
| Iprodine               | 2               | Nakuru                     |               | ●                                    |                                   |                                                 |                          |                                      |                       |                                       |
| Triflumizole           | 1               | Nakuru                     |               |                                      |                                   | ●                                               |                          |                                      |                       |                                       |
| Propineb               | 6               | Kirinyaga, Nakuru          |               | ●                                    |                                   |                                                 |                          |                                      |                       |                                       |
| Cyproconazole          | 1               | Kirinyaga                  |               |                                      |                                   | ●                                               |                          |                                      |                       |                                       |
| Epoxiconazole          | 1               | Kirinyaga                  |               | ●                                    |                                   | ●                                               |                          |                                      |                       |                                       |
| Flusilazole            | 1               | Kirinyaga                  |               |                                      |                                   | ●                                               |                          |                                      |                       |                                       |
| <b>Herbicides</b>      |                 |                            |               |                                      |                                   |                                                 |                          |                                      |                       |                                       |
| Linuron                | 1               | Kirinyaga, Nakuru          |               |                                      |                                   | ●                                               |                          |                                      |                       |                                       |
| Halosulfuron           | 1               | Kirinyaga                  |               |                                      |                                   | ●                                               |                          |                                      |                       |                                       |
| 2,4 D amine salt       | 6               | Kajiado, Kirinyaga, Nakuru |               |                                      |                                   |                                                 |                          |                                      |                       | ●                                     |
| Oxyfluorfen            | 4               | Kajiado, Nakuru            |               | ●                                    |                                   |                                                 |                          |                                      |                       |                                       |
| Glufosinate - Ammonium | 1               | Nakuru                     |               |                                      |                                   | ●                                               |                          |                                      |                       |                                       |

The table below provides information about identified HHPs and reasons for their listing

Table 18: Information about identified HHPs and reasons for their listing

| Active ingredient   | Reason for listing                                                                                                                                                    |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Insecticides</b> |                                                                                                                                                                       |
| Abamectin           | Highly toxic to bees according to evaluation by Pest Control Products Board (PCPB)                                                                                    |
| Acephate            | Reproductive toxicant (GHS 1B) by the Government of Japan                                                                                                             |
| Chlorpyrifos        | High incidences of residues in food products in Kenya                                                                                                                 |
| Diazinon            | IARC Probably human carcinogen (2A), evidence of incidences of poisonings (human and wildlife), high food residues and high levels in sediments of freshwater systems |
| Flubendiamide       | GHS* reproductive (1B), Government of Japan                                                                                                                           |
| Spirodiclofen       | GHS* carcinogen (1B), Government of Japan                                                                                                                             |
| Dimethoate          | GHS* reproductive (1B), Government of Japan                                                                                                                           |
| Ethoprophos         | GHS* carcinogen (1B), ECHA & Government of Japan; GHS* reproductive (1B), Government of Japan                                                                         |
| Malathion           | IARC Probably human carcinogen (2A)                                                                                                                                   |
| Paraffin oil        | GHS* carcinogen (1B), ECHA                                                                                                                                            |
| Thiamethoxam        | Highly toxic to bees according to evaluation by Pest Control Products Board (PCPB)                                                                                    |
| <b>Fungicides</b>   |                                                                                                                                                                       |
| Carbendazim         | Mutagenic toxicant (GHS Category 1B) and GHS Reproductive toxicant (Category 1B), EU and Government of Japan                                                          |
| Chlorothalonil      | EPA probable/ likely human carcinogen                                                                                                                                 |
| Cyproconazole       | GHS* reproductive (1B), ECHA                                                                                                                                          |
| Dimethomorph        | GHS* reproductive (1B), Government of Japan                                                                                                                           |

Table 18: Information about identified HHPs and reasons for their listing

| Active ingredient      | Reason for listing                                         |
|------------------------|------------------------------------------------------------|
| Epoxiconazole          | GHS* reproductive (1B), ECHA                               |
| Thiophanate-methyl     | EPA probable/likely carcinogen                             |
| Iprovalicarb           | EPA probable/likely carcinogen                             |
| Kresoxim-methyl        | GHS* reproductive (1B), EU and Government of Japan         |
| Iprodine               | EPA probable/likely carcinogen                             |
| Triflumizole           | Reproductive toxicant (GHS 1B) EU                          |
| Flusilazole            | GHS* reproductive (1B), ECHA                               |
| Mancozeb               | EPA probable/likely carcinogen, GHS* reproductive (1B), EU |
| Propiconazole          | GHS* reproductive (1B), EU and Government of Japan         |
| Propineb               | EPA probable/likely carcinogen                             |
| Herbicides             |                                                            |
| Linuron                | GHS* reproductive (1B), ECHA                               |
| Halosulfuron           | GHS* reproductive (1B), ECHA                               |
| 2,4 D amine salt       | High incidences of residues in food products in Kenya      |
| Oxyfluorfen            | EPA probable/likely carcinogen                             |
| Glufosinate - Ammonium | GHS* reproductive (1B), ECHA                               |

A further analysis of the pesticides established that about 42.5% of the products were highly toxic to bees and/or aquatic organisms, birds, earthworms or mammals (Table 19). 29 pesticide active ingredients were registered in these products, representing 15.1% of all the active ingredients.

Table 19: Pesticides active ingredients identified to be highly toxic to bees or aquatic organisms, birds, earthworms or mammals

| Active Ingredient   | No. of Products | Where identified           | Highly toxic |                   |       |            |         |
|---------------------|-----------------|----------------------------|--------------|-------------------|-------|------------|---------|
|                     |                 |                            | Honeybees    | Aquatic organisms | Birds | Earthworms | Mammals |
| <b>Insecticides</b> |                 |                            |              |                   |       |            |         |
| Abamectin           | 37              | Kajiado, Kirinyaga, Nakuru | ●            |                   |       |            |         |
| Acetamiprid         | 19              | Kajiado, Kirinyaga, Nakuru |              |                   | ●     | ●          |         |
| Alpha-cypermethrin  | 13              | Kajiado, Kirinyaga, Nakuru | ●            | ●                 |       |            |         |
| Amitraz             | 1               | Kirinyaga                  |              | ●                 | ●     |            |         |
| Beta-cyfluthrin     | 1               | Kajiado, Kirinyaga, Nakuru | ●            | ●                 |       |            |         |
| Bifenthrin          | 1               | Nakuru                     | ●            |                   |       |            |         |
| Chlorantraniliprole | 2               | Kirinyaga, Nakuru          |              | ●                 |       |            |         |
| Chlorfenapyr        | 7               | Kajiado, Kirinyaga, Nakuru |              | ●                 | ●     |            |         |
| Chlorpyrifos        | 7               | Kajiado, Kirinyaga, Nakuru | ●            | ●                 | ●     |            |         |
| Cyantraniliprole    | 2               | Nakuru                     | ●            |                   |       |            |         |
| Cypermethrin        | 6               | Kajiado, Kirinyaga         | ●            | ●                 |       |            |         |
| Deltamethrin        | 5               | Kajiado, Kirinyaga, Nakuru | ●            | ●                 |       |            | ●       |
| Diadifenethuron     | 1               | Kajiado, Kirinyaga, Nakuru | ●            | ●                 |       |            |         |
| Diazinon            | 2               | Kajiado, Kirinyaga, Nakuru | ●            | ●                 | ●     |            |         |
| Dichlorvos          | 1               | Nakuru                     | ●            |                   |       |            |         |
| Dimethoate          | 3               | Kajiado, Kirinyaga, Nakuru | ●            |                   |       |            |         |
| Ethoprophos         | 1               | Kirinyaga, Nakuru          |              | ●                 | ●     |            | ●       |
| Fenpyroximate       | 1               | Kajiado, Nakuru            |              | ●                 |       |            |         |
| Fipronil            | 1               | Nakuru                     | ●            |                   | ●     |            | ●       |
| Imidacloprid        | 12              | Kajiado, Kirinyaga, Nakuru | ●            |                   | ●     |            |         |
| Lambda-cyhalothrin  | 32              | Kajiado, Kirinyaga, Nakuru | ●            | ●                 |       |            |         |
| Malathion           | 2               | Kajiado, Kirinyaga, Nakuru | ●            | ●                 |       |            |         |
| Pyridaben           | 2               | Kajiado, Kirinyaga         | ●            | ●                 |       |            |         |
| Sulfoxaflor         | 2               | Kirinyaga, Nakuru          | ●            |                   |       |            |         |
| Thiamethoxam        | 7               | Kajiado, Kirinyaga, Nakuru | ●            |                   |       |            |         |
| <b>Fungicides</b>   |                 |                            |              |                   |       |            |         |
| Carbendazim         | 9               | Kajiado, Kirinyaga, Nakuru |              |                   |       | ●          |         |
| Mancozeb            | 41              | Kajiado, Kirinyaga, Nakuru |              | ●                 |       |            |         |
| Sulphur             | 5               | Kajiado, Kirinyaga, Nakuru |              | ●                 |       |            |         |

**Classification under criterion 8 of JMPM: Environmental hazards of identified pesticides Due to their high toxicity to the environment**, these pesticides should be classified under criterion 8. Further follow up should be undertaken to establish evidence of high incidence of their effects to human health and the environment under local conditions of their use to warrant their listing under criterion 8. In the absence of local evidence of their effects to the environment, precautionary principle should be applied in the use of these pesticides. Their registration and use should be reviewed to protect pollinators (honey bees) and other organisms.

### 3.5 Pesticides Banned in Other Jurisdictions

Analysis of the pesticides used by the respondents revealed that 72 (37.5%) of the 192 identified pesticide active ingredients were banned in other countries across the globe (PAN, 2022). Pesticides banned in other jurisdictions for health and environment reasons should not be allowed for use in Kenya as it shifts the burden of managing the risk of such pesticides to users who cannot afford adequate protective measures. Governments should prohibit the export of chemicals they have prohibited nationally in line with the Global Framework on Chemicals. Table 20 below provides details of pesticides used in Kenya but are banned in other jurisdictions.

Table 20: Details of pesticides used in Kenya but are banned in other jurisdictions

| Active Ingredient   | Total bans/<br>Not approved | Countries                                                                                                                                                                                |
|---------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Insecticides</b> |                             |                                                                                                                                                                                          |
| Acephate            | 38                          | Bosnia &Herzegovina, China, EU, Indonesia, Malaysia, Oman, Palestine, Saudi Arabia, Serbia, Switzerland, Turkey, UK,                                                                     |
| Alpha-cypermethrin  | 29                          | EU(n/a), UK(n/a), Turkey                                                                                                                                                                 |
| Amitraz             | 39                          | Bosnia & Herzegovina, Cambodia, Egypt, EU, Iran, Oman, Palestine, Saudi arabia, Switzerland, Syrian Arab Republic, Turkey, UK                                                            |
| Beta-cyfluthrin     | 30                          | Colombia, EU, Morocco, Palestine, Saudi arabia, Turkey, UK, Switzerland,                                                                                                                 |
| Bifenthrin          | 30                          | EU, Oman, Turkey, UK,                                                                                                                                                                    |
| Chlorfenapyr        | 32                          | Bosnia &Herzegovina, EU, Saudi arabia, Serbia, Turkey, UK,                                                                                                                               |
| Chlorpyrifos        | 39                          | Canada, Egypt, EU, Indonesia, Morocco, Palestines, Saudi arabia, Sri lanka, Switzerland, Thailand, Turkey, UK, Vietnam                                                                   |
| Clofentezine        | 1                           | Brazil                                                                                                                                                                                   |
| Diafenthizuron      | 32                          | Egypt, EU(n/a), Mozambique, Switzerland, Turkey, UK(n/a)                                                                                                                                 |
| Diazinon            | 39                          | Argentina, Bosnia & Herzegovina, Egypt, EU, India, Indonesia, Mozambique, Palestine, Saudi arabia, Sri lanka, Switzerland, Turkey, UK,                                                   |
| Dichlorvos          | 38                          | Bangladesh, EU, Fiji, India, Indonesia, Morocco, Nepal, Palestine, Saudi arabia, Serbia, Switzerland, Turkey, UK                                                                         |
| Difenoconazole      | 1                           | Norway                                                                                                                                                                                   |
| Dimethoate          | 33                          | Cameroon, EU, Indonesia, Saudi arabia, Sri lanka, Suriname, UK                                                                                                                           |
| Ethoprophos         | 37                          | Cambodia, China, EU, Guinea, Mauritania, Morocco, Nicaragua, Papua New Guinea, Saudi Arabia, UK, Vietnam                                                                                 |
| Flubendiamide       | 1                           | USA                                                                                                                                                                                      |
| Imidacloprid        | 29                          | EU(n/a), Fiji                                                                                                                                                                            |
| Lambda-cyhalothrin  | 29                          | EU, Saudi arabia, UK,                                                                                                                                                                    |
| Lufenuron           | 28                          | EU(n/a), Uruguay                                                                                                                                                                         |
| Malathion           | 32                          | EU, Indonesia, Palestine, Switzerland, Syrian Arab Republic, UK                                                                                                                          |
| Metalaxyl           | 1                           | Brazil                                                                                                                                                                                   |
| Methomyl            | 47                          | Benin, Cambodia, China, Colombia, EU, Guinea, Indonesia, Kuwait, LAO PDR, Malaysia, Mauritania, Morocco, Mozambique, Myanmar, Nicaragua, Saudi Arabia, Turkey, UAE, UK, Uruguay, Vietnam |
| Paraffin oil        | 28                          | EU(n/a), UK(n/a)                                                                                                                                                                         |
| Profenofos          | 34                          | EU(n/a), Indonesia, Malaysia, Saudi arabia, Switzerland, Turkey, UK(n/a), USA(v/w)                                                                                                       |
| Pymetrozine         | 32                          | EU, Morocco, Norway, Palestine, Turkey, UK                                                                                                                                               |
| Spiroclofen         | 29                          | EU(n/a), Morocco, UK(n/a)                                                                                                                                                                |

Table 20: Details of pesticides used in Kenya but are banned in other jurisdictions

| Active Ingredient                | Total bans/<br>Not approved | Countries                                                                                                                                                        |
|----------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Thiacloprid                      | 31                          | EU, Morocco, Turkey, UK, USA(v/w)                                                                                                                                |
| Thiamethoxam                     | 27                          | EU                                                                                                                                                               |
| Thiocyclam Hydrogen Ox-<br>alate | 30                          | EU, Switzerland, Turkey, UK                                                                                                                                      |
| <b>Fungicides</b>                |                             |                                                                                                                                                                  |
| Boron                            | 28                          | EU(n/a), UK (n/a)                                                                                                                                                |
| Bronopol                         | 29                          | EU (n/a), Turkey, UK (n/a)                                                                                                                                       |
| Captan                           | 6                           | Cambodia, Fiji, Guinea, Oman, Saudi Arabia, Vietnam                                                                                                              |
| Carbendazim                      | 34                          | Egypt, EU, Morocco, Mozambique, Switzerland, Turkey, UAE, UK,                                                                                                    |
| Chlorothalonil                   | 34                          | Colombia, EU, Morocco, Palestine, Saudi arabia, Turkey, UK, Switzerland,                                                                                         |
| Copper                           | 1                           | Saudi Arabia                                                                                                                                                     |
| Copper (I) oxide                 | 1                           | Saudi Arabia                                                                                                                                                     |
| Cupric hydroxide                 | 1                           | Saudi arabia                                                                                                                                                     |
| Cuprous Oxide                    | 1                           | Saudi arabia                                                                                                                                                     |
| Cyproconazole                    | 28                          | EU(n/a), UK(n/a)                                                                                                                                                 |
| Difenoconazole                   | 1                           | Norway                                                                                                                                                           |
| Dodemorph-Acetate                | 1                           | Saudi arabia                                                                                                                                                     |
| Fenamidone                       | 29                          | EU, Turkey, UK                                                                                                                                                   |
| Fluazinam                        | 1                           | Norway                                                                                                                                                           |
| Flusilazole                      | 32                          | Egypt, EU(n/a), Switzerland, Turkey, UK(n/a), USA(v/w)                                                                                                           |
| Folpet                           | 3                           | Australia, Malaysia, Saudi arabia                                                                                                                                |
| Hexaconazole                     | 35                          | Brazil, Egypt, EU(n/a), Morocco, Palestine, Saudi arabia, Turkey, UK (n/a), Switzerland                                                                          |
| Iprodione                        | 32                          | Egypt, EU, Morocco, Mozambique, Turkey, UK                                                                                                                       |
| Mancozeb                         | 31                          | EU, Morocco, Saudi arabia, UAE, UK,                                                                                                                              |
| Metalaxyl                        | 1                           | Brazil                                                                                                                                                           |
| Prochloraz                       | 29                          | Brazil, EU(n/a), UK(n/a)                                                                                                                                         |
| Propiconazole                    | 29                          | EU, Turkey, UK                                                                                                                                                   |
| Propineb                         | 31                          | Egypt, EU, Morocco, Turkey, UK                                                                                                                                   |
| Sulfur                           | 29                          | EU (n/a), Indonesia, UK (n/a)                                                                                                                                    |
| Sulphur                          | 29                          | EU (n/a), Indonesia, UK (n/a)                                                                                                                                    |
| Tebuconazole                     | 1                           | Palestine                                                                                                                                                        |
| Thiamethoxam                     | 27                          | EU                                                                                                                                                               |
| Thiophanate Methyl               | 29                          | EU, Morocco, UK                                                                                                                                                  |
| Triadimefon                      | 32                          | Egypt, EU (n/a), Saudi Arabia, Switzerland,                                                                                                                      |
| Triflumizole                     | 29                          | EU(n/a), Morocco, UK(n/a)                                                                                                                                        |
| <b>Herbicides</b>                |                             |                                                                                                                                                                  |
| 2,4 D-Amine salt                 | 5                           | Kuwait, Mozambique, Norway, Saudi Arabia, Vietnam                                                                                                                |
| Acetochlor                       | 43                          | Bosnia & Herzegovina, Burkina Faso, Cabo Verde, Chad, Egypt, EU, Gambia, Guinea bissau, Mali, Mauritania, Niger, Senegal, Serbia, Switzerland, Togo, Turkey, UK. |
| Atrazine                         | 44                          | Bosnia & Herzegovina, Cabo verde, Chad, Egypt, EU, Gambia, Mauritania, Niger, Oman, Morocco, Palestine, Senegal, Switzerland, Togo, Turkey, UAE, UK, Uruguay.    |
| Fomesafen                        | 29                          | EU (n/a), Turkey, UK (n/a)                                                                                                                                       |
| Glufosinate - Ammonium           | 29                          | EU, Morocco, UK                                                                                                                                                  |
| Glyphosate                       | 4                           | Luxembourg, Mexico, Sri lanka, Vietnam                                                                                                                           |
| Glyphosate acid                  | 4                           | Luxembourg, Mexico, Sri lanka, Vietnam                                                                                                                           |
| Linuron                          | 34                          | Egypt, EU, India, Morocco, Norway, Oman, Saudi arabia, UK                                                                                                        |

Table 20: Details of pesticides used in Kenya but are banned in other jurisdictions

| Active Ingredient   | Total bans/<br>Not approved | Countries                                                                                                                                                                                                                                                                                    |
|---------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metolachlor         | 31                          | Brazil, Egypt, EU(n/a), Turkey, UK(n/a),                                                                                                                                                                                                                                                     |
| Metolaclor-S        | 31                          | Brazil, Egypt, EU(n/a), Turkey, UK(n/a)                                                                                                                                                                                                                                                      |
| Oxyfluorfen         | 1                           | Mozambique                                                                                                                                                                                                                                                                                   |
| Paraquat            | 58                          | Burkina faso, Cabo verde, Cambodia, Chad, China, EU, Fiji, Gambia, Guinea, Guinea bissau, South Korea, Kuwait, LAO PDR, Malaysia, Mali, Mauritania, Morocco, Mozambique, Niger, Oman, Palestine, Peru, Saudi Arabia, Senegal, Sri lanka, Switzerland, Taiwan, Togo, Turkey, UAE, UK, Vietnam |
| Paraquat dichloride | 58                          | Burkina faso, Cabo verde, Cambodia, Chad, China, EU, Fiji, Gambia, Guinea, Guinea bissau, South Korea, Kuwait, LAO PDR, Malaysia, Mali, Mauritania, Morocco, Mozambique, Niger, Oman, Palestine, Peru, Saudi Arabia, Senegal, Sri lanka, Switzerland, Taiwan, Togo, Turkey, UAE, UK, Vietnam |
| Tralkoxydim         | 30                          | EU(n/a), Turkey, UK(n/a), USA(v/w)                                                                                                                                                                                                                                                           |

### 3.5.1 Unethical pesticide trade

Further analysis showed that 17 (23.6%) of the banned active ingredients in their countries of origin were used in the study areas. This shows that the banned pesticides are still exported in Kenya despite that they are not allowed for use in their country of origin. These pesticides should be phase out in Kenya in line with the Section 12(2), Standards Act (cap 496) of the Business Laws (Amendment) Act, 2024.

Table 21: Detailed of pesticides exported to Kenya but banned in the country of origin.

| Active Ingredient  | Product Name        | Manufacturer                         | Origin      |
|--------------------|---------------------|--------------------------------------|-------------|
| Methomyl           | Metholing 90SP      | Huayang China Ltd                    | China       |
| Amitraz            | Mitac 20EC          | Arysta LifeScience SAS               | France      |
| Acephate           | Lotus 75%SP         | Nantong Weilike Chemical Co Ltd      | China       |
|                    | Otran               | Jiangsu Lanfeng Biochemical Co., Ltd | China       |
| Ethoprophos        | Mocap 10GR          | Bayer C. Sc                          | Germany     |
| Diafenthiuron      | Pegasus 500SC       | Syngenta Crop Protection AG          | Switzerland |
| Beta-cyfluthrin    | Thunder OD145       | Bayer AG                             | Germany     |
| Alpha-cypermethrin | Fastac 10EC         | BASF Agri                            | France      |
| Imidacloprid       | Confidor 200SL      | Bayer AG                             | Germany     |
|                    | Confidor 70WG       | Bayer AG                             | Germany     |
|                    | Thunder OD145       | Bayer AG                             | Germany     |
| Lambda-cyhalothrin | Karate zeon         | Syngenta Crop Protection AG          | UK          |
|                    | Duduthrin 1.7EC     | Syngenta Crop Protection AG          | UK          |
| Carbendazim        | Goldazim 500SC      | Arysta LifeScience Benelux Sprl      | Belgium     |
|                    | Rodazim 50SC        | Albaugh Europe Sarl                  | Switzerland |
| Chlorothalonil     | Daconil 720SC       | Syngenta Crop Protection AG          | Switzerland |
| Cyproconazole      | Protect combi 280SC | Sineria Industries Ltd               | Cyprus      |
| Mancozeb           | Milthane Super      | Cerexagri S.A.                       | France      |
|                    | Trinity Gold 452WP  | Agria SA                             | Bulgaria    |
|                    | Fortress gold       | Agria                                | Bulgaria    |
|                    | Zetanil 76WP        | Sipcam Oxon SpA                      | Italy       |
| Propineb           | Antracol 70WP       | Bayer CropScience AG                 | Germany     |
|                    | Melody duo 69WG     | Bayer AG                             | Germany     |
|                    | Milraz 76WP         | Bayer Crop Science AG                | Germany     |

Table 21: Detailed of pesticides exported to Kenya but banned in the country of origin.

| Active Ingredient   | Product Name   | Manufacturer                          | Origin  |
|---------------------|----------------|---------------------------------------|---------|
| Paraquat dichloride | Herbstar 200SL | Jiangsu Inter-China Group Corporation | China   |
|                     | Parastar 200SL | Quangx Tianyuan Biochemistry Co Ltd   | China   |
|                     | Cropoxone      | Kenvos Biotech Co., Ltd               | China   |
| Sulphur             | Sulfolac 80WP  | Agrostulln GmbH                       | Germany |
| Thiamethoxam        | Engeo 247SC    | Syngenta                              | Austria |

### 3.6 Manufacturers and Country of Origin

Pesticides reported by the respondents were manufactured by 219 different companies. The top 3 manufacturers were Syngenta, Bayer and BASF. The top 10 manufacturers of the reported pesticides are shown in the figure below. 5 of the top 10 manufacturers were based in China, 4 in Europe and 1 in India. Switzerland was the main source of pesticides exported by Syngenta while Germany was the main source of exports by Bayer.

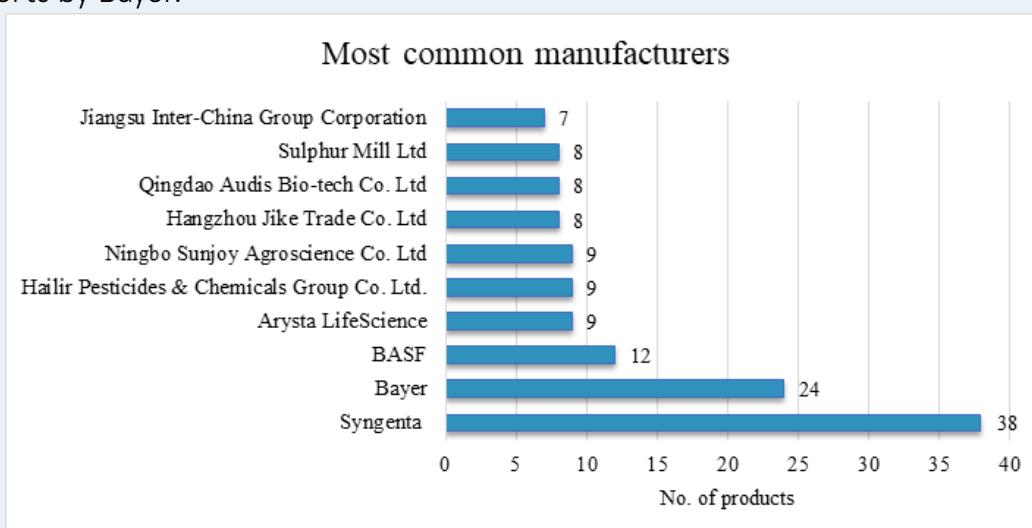



Figure 12: Most common manufacturers.

On country of origin, more than half, 268 (55.7%) of the pesticide products originated from China followed by India 65 (13.5%), Germany 30 (6.2%) and Switzerland 25 (5.2%). Other notable countries included USA (2.7%), Japan (2.5%) and UK (2.1%). This shows a shift in the production of pesticides from Europe to Asia. This may be attributed to less stringent regulations in India and China where pesticides that are banned for use in Europe can be produced in countries outside Europe and exported to the rest of the world.

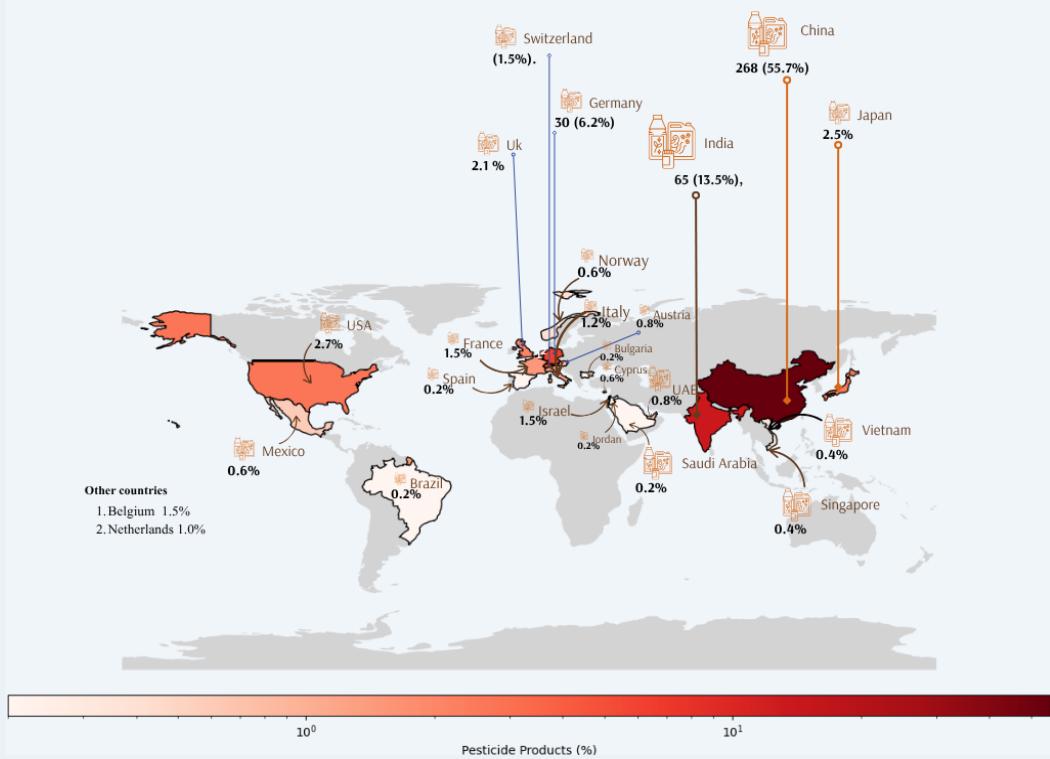



Figure 13: Country of origin of pesticides exported to Kenya.

### 3.6.1 Country of authorization

477 (91%) of the pesticides products were registered in Kenya by Pest Control Products Board (PCPB), 28 (5.0%) of the products were registered in Tanzania under Tanzania Plant Health and Pesticides Authority (THPA) while 22 (4%) were not known where or whether they are registered.

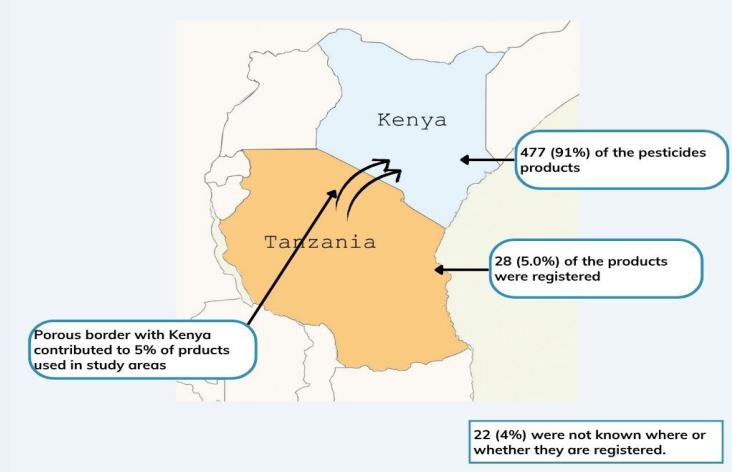



Figure 14: Country of authorization

The results show that a significant number of products (5.0%) used in the study areas came from Tanzania which could be attributed to the porous border with Kenya. This calls for cross border collaboration between pesticide regulators from Kenya and Tanzania in addressing illegal trade of pesticides. 22% of the total products found in Kajiado county and 1% of products found in Kirinyaga were registered in Tanzania.

## 3.7 Pesticide Use Practices

### 3.7.1 Type of application equipment and frequency of spraying

The study established that knapsack sprayer was the most widely used application equipment by the respondents in Kajiado and Kirinyaga counties while in Nakuru county the most common included machine pumps, knapsack sprayer, nozzles and trolleys. Generally, most of the farmers responded to spraying pesticides on a weekly basis. This shows heavy use and reliance on the conventional products in the area for farming. Others respondents indicated biweekly, monthly, regularly, among others.

### 3.7.2 Use of personal protective clothing (PPE)

More than half (68.9%) of the respondents in all three study areas reported using PPEs during pesticide application. The use of PPE was higher in Nakuru (98.4%) followed by Kirinyaga (55.5%) and Kajiado (54.3%). The high use of PPEs in Nakuru can be attributed to the large number of contract farm workers, as most are provided with PPEs by their employers.

In Kajiado and Kirinyaga counties, 45.7% and 44.5% of the respondents respectively did not use PPEs. In addition, even those who use PPEs did not wear appropriate and full protective gears. The widely used PPEs included boots/shoes, overalls, gloves and facemasks.

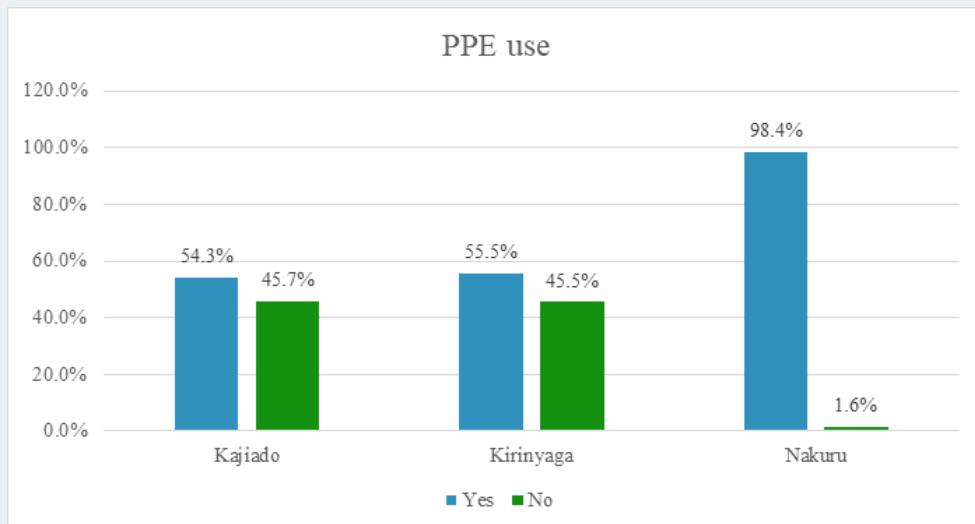



Figure 15: PPE use.

#### Box 3: Reasons for not using PPEs

The reasons reported by the respondents for not using PPEs were:

- » PPEs were not available
- » PPEs were too expensive
- » PPEs were uncomfortable.

### 3.7.3 Re-entry to the field after pesticide spraying

It was reported that 514 (34%) of the respondents re-entered the field after pesticide spraying after one day, 451 (29.8%) re-entered the same day, 321 (21.2%) after 3 days and another proportion of 227 (15%) reported re-entering after 2 days. Nakuru county had the highest number of respondents (53.5%) re-entering the field on the same day after pesticide spraying followed by Kajiado at 31%.

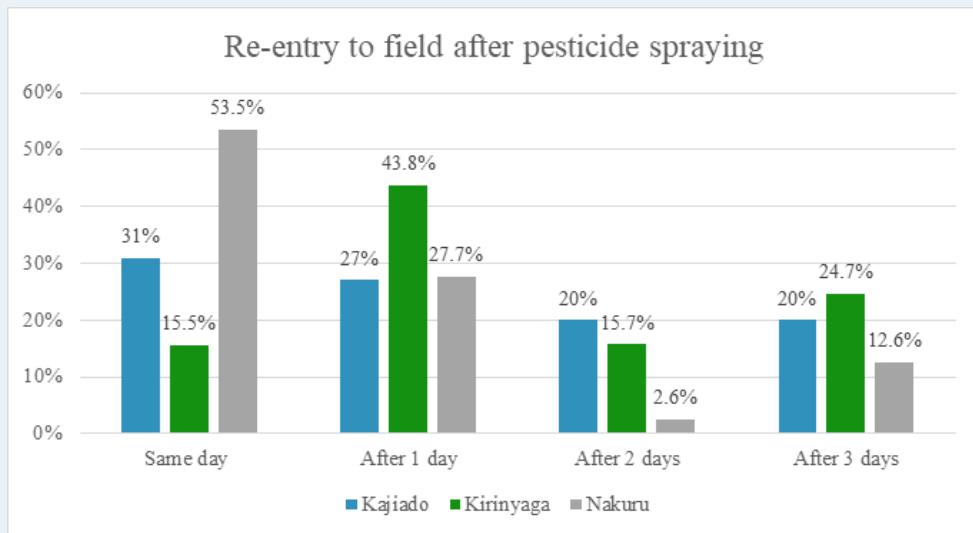



Figure 16: Re-entry to field after pesticide spraying

The respondents who entered the fields on the same day after spraying were at the highest risk of exposure to pesticide residues. The results indicates that slight over a third of the respondents did not observe re-entry interval with Nakuru being the most affected.

## 3.8 Pesticides Disposal, Storage and Cleaning Practices

### 3.8.1 Disposal practices

The main method of disposing leftover and unwanted pesticides among the respondents was burning (43.7%). Other methods included returning to company/distributor (19.3%), burying in the soil (16.3%), throwing in the river (12.7%), throwing in the field (12%) and keeping in the grain store 9%) (Table 22).

Kajiado (66%) and Kirinyaga (42%) reported the highest number of respondents who burned left over and unwanted pesticides compared to Nakuru (22.4%). Conversely, Nakuru reported the highest proportion of respondents who returned empty pesticide containers to the company/distributor (54.2%) compared to Kajiado and Kirinyaga (Table 22). This shows that most flower farms in Naivasha had contracted license hazardous waste handlers in line with the Waste Management Regulations of 2006.

Table 22: Distribution practices for unwanted and leftover pesticides

| Disposal method                 | Responses (%) |           |        |         |
|---------------------------------|---------------|-----------|--------|---------|
|                                 | Kajiado       | Kirinyaga | Nakuru | Average |
| Returned to company/distributor | 2.3           | 1.3       | 54.2   | 19.3    |
| Used until it is finished       | 56            | 46.8      | 42.5   | 48.4    |
| Burned                          | 66.7          | 42        | 22.4   | 43.7    |
| Buried                          | 9.2           | 18.2      | 21.4   | 16.3    |
| Other                           | 7.1           | 5.5       | 18.7   | 10.4    |
| Kept in the grain store         | 19.5          | 3.2       | 4.3    | 9.0     |
| Thrown in the river             | 2.6           | 0.7       | 3      | 2.1     |
| Kept in the home                | 24.1          | 11.9      | 2      | 12.7    |
| Thrown in the field             | 18.2          | 16.2      | 1.7    | 12.0    |

Burning (55.4%) was also the most common method of disposing empty pesticide containers. Other methods reported included returning to company/distributor (25.5%), burying in the soil (21.5%), putting in rubbish/trash (16.8%) and throwing in open fields (14.6%). Another 13% of the respondents disposed them in pit latrines or rivers or having them collected by waste pickers. Others included throwing in pit latrines or rivers or having them collected by waste pickers (Table 23).

Nakuru (63.5%) led in the number of respondents who returned empty pesticide containers to companies while Kajiado (79.1%) and Kirinyaga (63.3%) led in the number of respondents who mainly disposed of empty pesticide containers through burning.

Table 23: Disposal methods for empty pesticide containers

| Disposal method                 | Responses (%) |           |        |         |
|---------------------------------|---------------|-----------|--------|---------|
|                                 | Kajiado       | Kirinyaga | Nakuru | Average |
| Returned to company/distributor | 4.4           | 8.5       | 63.5   | 25.5    |
| Put in rubbish/trash            | 16            | 8.5       | 25.8   | 16.8    |
| Burned                          | 79.1          | 63.3      | 23.9   | 55.4    |
| Others                          | 4.6           | 11.5      | 22.9   | 13.0    |
| Buried                          | 11.1          | 30.8      | 22.6   | 21.5    |
| Thrown in the open field        | 24.6          | 18.3      | 1      | 14.6    |

The study established that respondents did not dispose of left over pesticides, obsolete pesticides and empty pesticide containers in a proper manner, thus potentially increasing the risk of exposure to human health and the environment. It was observed that take back schemes were not common in the study areas. The manufacturers of pesticides should implement an extended producer responsibility scheme for obsolete pesticides and empty pesticide containers to reduce their risks to human health and the environment in line with the Extended Producer Responsibility (EPR) regulations, 2024. They should also educate and train the farmers on proper management and disposal of pesticides and empty pesticide containers.

### 3.8.2 Storage practices

Nearly all the respondents (97.2%) reported that the pesticides were locked away from children. A high proportion of the respondents (95.3%) affirmed that pesticides were separated from other items. This shows that there was minimal risk of exposure to pesticides by children or contamination of food and other items by pesticides at home.

### 3.8.3 Washing and cleaning of equipment

The study results indicate that the most of the respondents in the 3 counties washed their equipment in the farm, at the watercourse/irrigation drain, at home and in ponds. Others reports that they did not wash the equipment.

Table 24: Places of washing equipment

| Places of washing                   | Responses (%) |           |        |         |
|-------------------------------------|---------------|-----------|--------|---------|
|                                     | Kajiado       | Kirinyaga | Nakuru | Average |
| At home                             | 25.8          | 45.4      | 1.7    | 24.3    |
| At the well                         | 6.9           | 0.8       | 20.4   | 9.4     |
| In the farm                         | 62.6          | 36.3      | 32.1   | 43.7    |
| In the cement kilt                  | 1             | 4.5       | 2.3    | 2.6     |
| In the pond                         | 10.6          | 4.7       | 24.4   | 13.2    |
| At the watercourse/irrigation drain | 37.7          | 28.6      | 29.4   | 31.9    |
| I do not wash                       | 15.7          | 1.2       | 4      | 7.0     |
| Others                              | 1.5           | 0.5       | 41.1   | 14.4    |

The study established bad practices in cleaning and washing of spraying equipment by the respondents, increasing the risk of exposure to pesticide residues and contamination of the environment. For instance, washing the equipment in water courses can lead to poisonings of livestock and human beings who depend on water from such sources. Additionally, it can affect the aquatic ecosystem.

### 3.8.4 Washing facilities

Majority of the respondents, 1167 (76.6%) had facilities for washing hand and body after pesticide application while 356 (23.4%) did not have any facilities. The most common washing facilities were taps, irrigation drains, water containers, river, wells, ponds/lakes and others included designated areas such as soak pits and shower rooms.

Table 25::Availability of washing facilities

| Washing facilities        | Responses (%) |           |        |         |
|---------------------------|---------------|-----------|--------|---------|
|                           | Kajiado       | Kirinyaga | Nakuru | Average |
| Availability (Yes)        | 64.8          | 80        | 90.2   | 78.3    |
| Nature of facilities      |               |           |        |         |
| Taps                      | 35.8          | 45.5      | 88.4   | 56.6    |
| Irrigation drains/furrows | 53.4          | 40.2      | 31.2   | 41.6    |
| Water containers          | 61.7          | 23.4      | 19.5   | 34.9    |
| River                     | 17.4          | 16.9      | 16.4   | 16.9    |
| Wells                     | 10.1          | 5         | 22.9   | 12.7    |
| Ponds/lakes               | 7.6           | 0.9       | 21.2   | 9.9     |
| Others                    | 13.4          | 1.1       | 12     | 8.8     |

The results indicate that there were no proper washing facilities for pesticides applicators and people who handled pesticides. The lack of proper washing facilities can potentially increase exposure to pesticides, even to people who do not directly handle pesticides such as children and other household members through take -home pesticides.

### 3.9 Spray Drifts

#### 3.9.1 Distance lived from the farm

Majority of the respondents, 534 (35.1%) reported that they lived within the farm, 407 (26.7%) lived less than a kilometre from the farm, 194 (12.7%) lived within 3-4km from the farm, 189 (12.4%) lived within 1-2km from the farm while 199 (13.1%) lived more than 4km from the farm. Kajiado county had the highest number of respondents who lived within and less than 1km from the farm (81%). The findings indicate a high risk of exposure for the majority of the respondents through drifts. More importantly, those that lived on the farm were at the highest risk of exposure though drift.

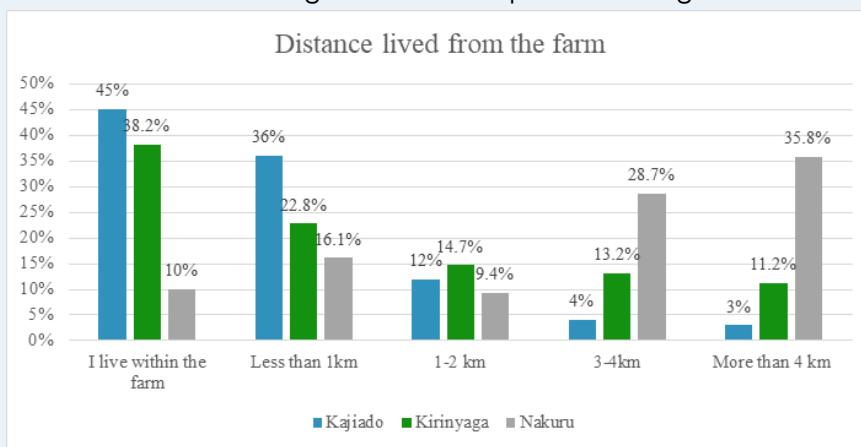



Figure 17: Distance lived from the farm

#### 3.9.2 Wind direction

The study reveals that almost half, 616 (41.3%) of the respondents just sprayed randomly, 294 (19.7%) sprayed against the wind direction while 582 (39%) sprayed along the wind direction. This implies that majority, 910 (61%) did not spray pesticides correctly during a windy day. Nakuru county had the highest

number of respondents who sprayed randomly (52.3%) while Kajiado county reported most cases of spraying against the wind (28.9%).

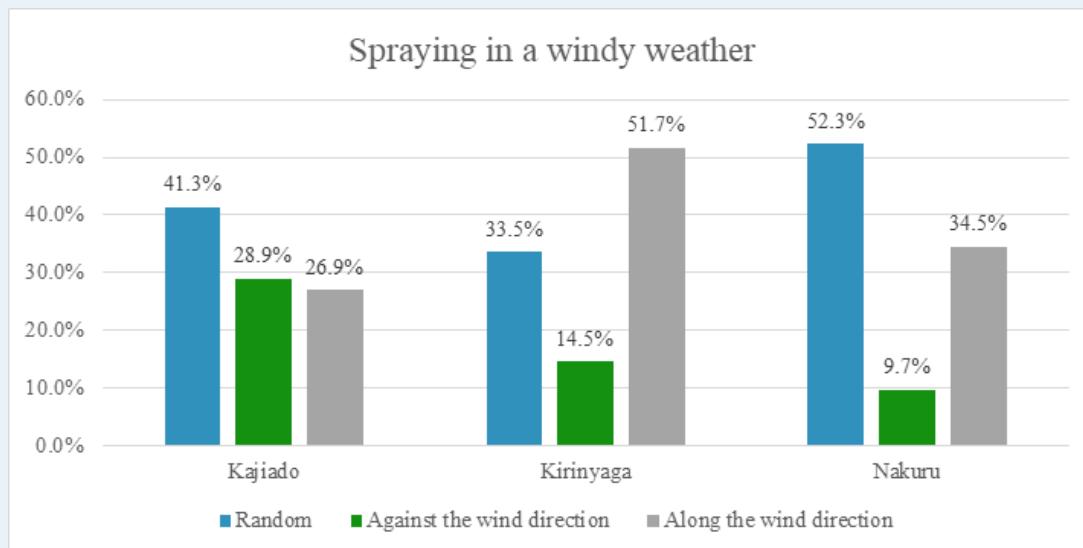



Figure 18: Spraying in a windy weather.

Wind direction is very important to consider when applying pesticides. Applying pesticides in the direction of the wind reduces chances of exposure to pesticides through drift while spraying against the wind can cause pesticides to blow back to the applicator/sprayer.

## 3.10 Access to Information, Trainings and Awareness of Hazards

### 3.10.1 Pesticides labels

The study established that majority, 1221 (82.2%) had access to pesticides labels while 265 (17.8%) did not. Nakuru county (66.9%) had the least number of respondents who had access to the pesticides' labels. The results indicate that majority of the respondents had access to and used the label. The label offers useful information to the user, including information on their hazards, application rate, correct use of the product, disposal method and first aid measures. Farmers should be educated and sensitized on the importance of reading the label before purchasing and using pesticides

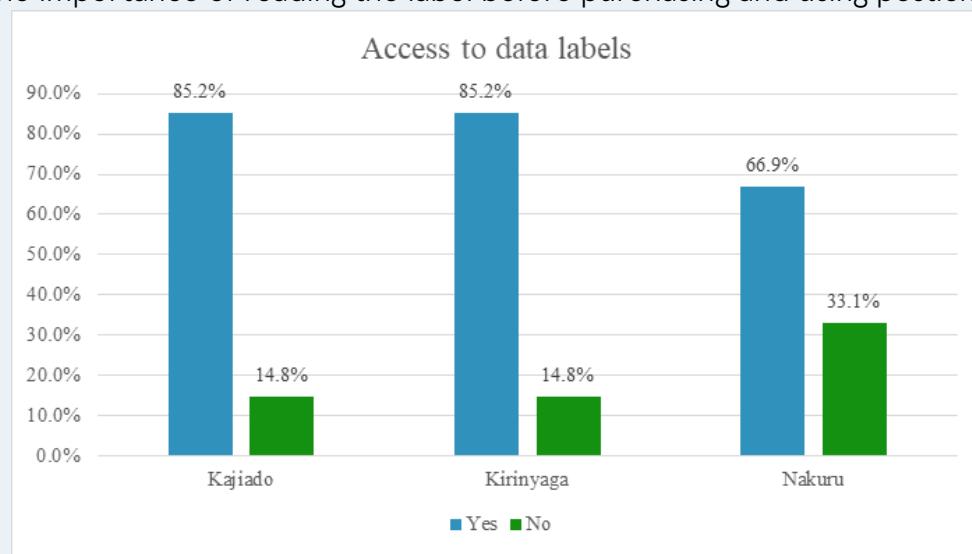



Figure 19: Access to data labels

Majority of those who had access to the label indicated they usually read them and found the information useful. Furthermore, it was established that majority of the labels were written in Kiswahili or English language. The information was found to be readable and big enough to read. These findings indicates that most of the manufacturers of pesticides used in the area adhered to the labelling requirements<sup>8</sup>.

### 3.10.2 Training on pesticide use and handling

More than half, 928 (62.2%) of the respondents had received training on pesticide use while another 564 (37.8%) had not received any training. Kajiado (43.7%) and Kirinyaga (45%) recorded higher number of respondents with no training on pesticide use while Nakuru (88%) recorded the highest number of respondents who had received training. This can be attributed to regular trainings organized by the flower farms.

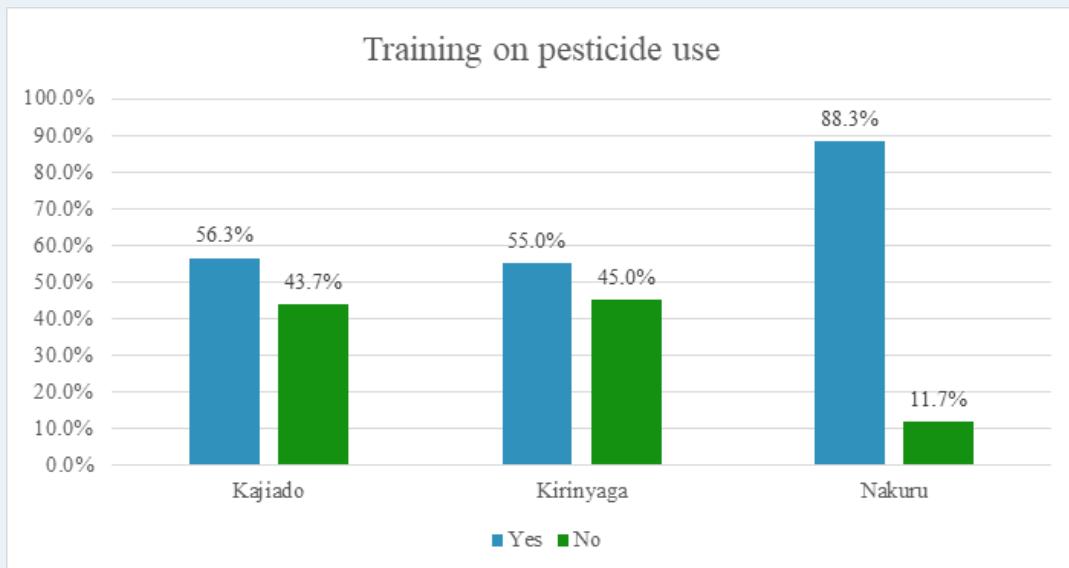



Figure 20: Training on pesticide use

In terms of where the respondents received the training, most reported modes of training included field demonstrations (65.2%), seminars (55.5%), agrovet shops (27.2%) and courses (23.1%).

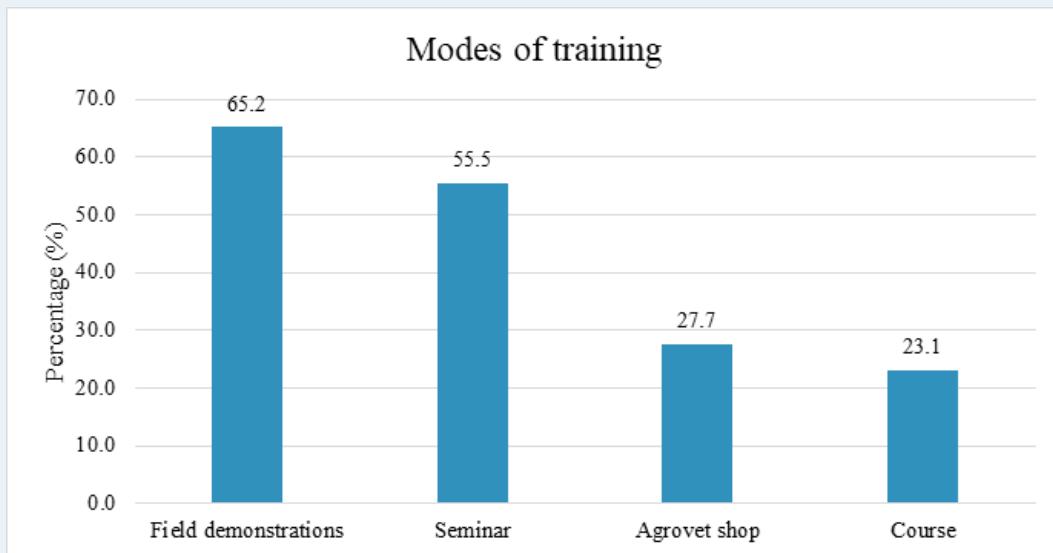



Figure 21: Modes of training

8 Section 6 of the Pest Control Products (Labelling, Advertisement and Packaging) regulations 2024.

### 3.10.3 Purchase/use of Obsolete Pesticides

The use of obsolete pesticides was not a problem in the 3 counties. A high proportion of the respondents, 1097 (72%) stated that they had never purchased or used expired/obsolete pesticides with only 145 (9.5%) of the respondents stating otherwise. Another, 281 (18.5%) of the respondents were not aware whether they had purchased or used an expired or obsolete pesticide in the past.

The results shows that most of the respondents were not exposed to pesticides through purchase or use of expired or obsolete pesticides. However, awareness creation is still needed to educate the farmers in the study on the need to check the expiry date of pesticides before purchasing or using them.

### 3.10.4 Decanting of pesticides

727 (47.7%) of the respondents in the 3 counties admitted to decanting pesticides into other containers. In addition, 469 (30.8%) of the respondents reportedly reused the original pesticides containers for other uses. The containers were mainly used for water and food storage, package for food items, household items and for making toys, decorations and handicrafts.

Kajiado (60.5%) and Nakuru (46.5%) counties had the highest rates of decanting pesticides and reuse of the original containers indicating that it is a problem in the two areas as compared to Kirinyaga county.

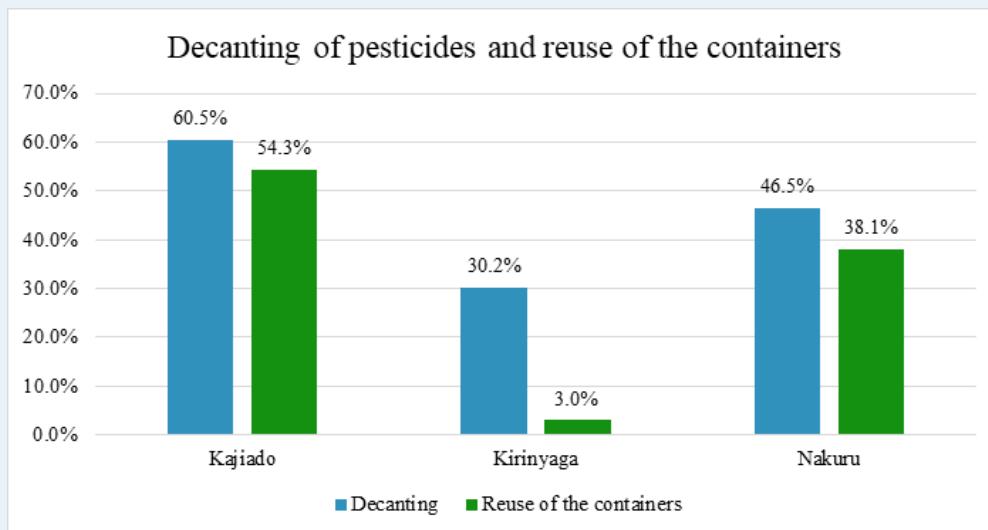



Figure 22: Decanting of pesticides and reuse of the containers

Empty pesticide containers should never be used as they still contain pesticide residues. The use of these containers for other purposes indicates a high risk of accidental poisonings particularly when used to store food, water or package food items. Recycling of the containers to make decorations, handicrafts and toys present a high risk of exposure to children thus should highly be discouraged.

### 3.10.5 Spillages

A high proportion, 1066 (70.6%) of the respondents in the 3 counties indicated that they had direct exposure when using pesticides such as spills while 444 (29.4%) indicated they have never had. Kajiado county recorded the highest rate 87.9% of the direct exposure followed by Kirinyaga county at 63.7%.

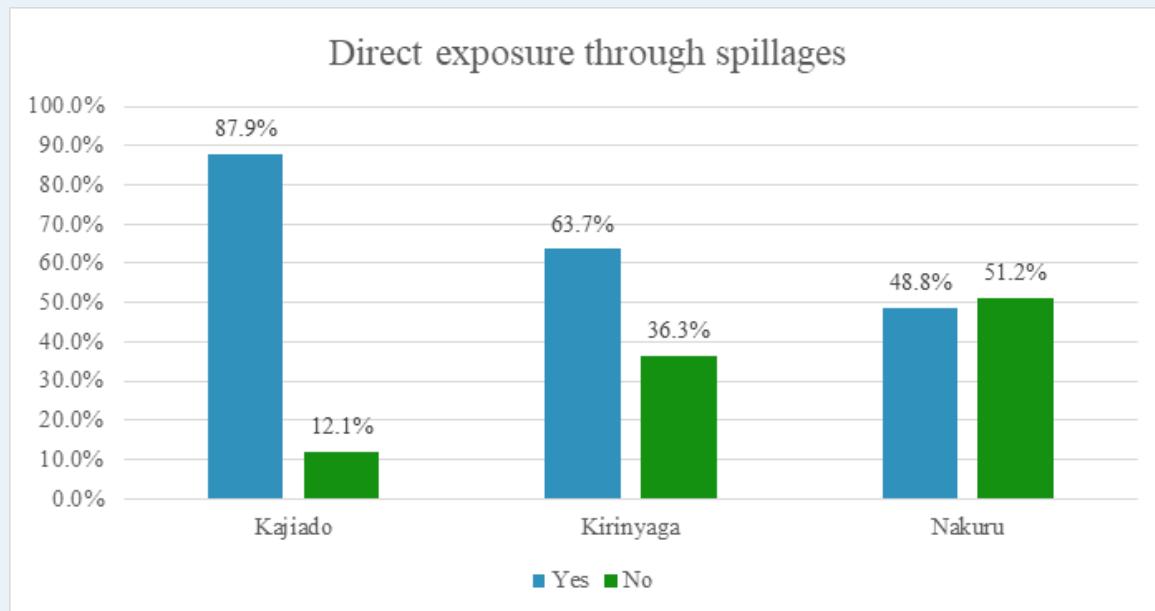



Figure 23: Direct exposure through spillages

Most of the direct exposure, 70.5% occurred during spraying, 57.1% during mixing and 24% during loading. Other respondents reported that they were exposed while working in the farms where pesticides are being used as well as while washing the spraying equipment.

The study established that respondents were exposed mainly because of faulty spray equipment, change in wind direction, decanting while mixing, loose bottle cap, falling while spraying and faulty packaging.

## 3.11 Health Effects

### 3.11.1 Reported adverse effects

About 544 (36.4%) of the respondents reported they had experienced adverse effects following exposure to pesticides. The most common symptoms reported included; skin rashes, headaches, nausea, vomiting, dizziness, excessive salivation, diarrhoea, sleeplessness, difficulty in breathing and excessive sweating. Kirinyaga (41.3%) and Nakuru (40.6%) counties recorded the highest rate of the respondents who reported adverse effects from pesticide exposure compared to Nakuru (27.4%).

Table 26: Acute effects experienced after pesticide exposure

| Acute effects        | Responses (%) |           |        |         |
|----------------------|---------------|-----------|--------|---------|
|                      | Kajiado       | Kirinyaga | Nakuru | Average |
| Experienced (Yes)    | 40.6          | 41.3      | 27.4   | 36.4    |
| Skin rashes          | 59.5          | 48.4      | 85.9   | 64.6    |
| Headache             | 57.9          | 63.3      | 45.9   | 55.7    |
| Nausea               | 47            | 14.5      | 48.2   | 36.6    |
| Vomiting             | 40.1          | 10.9      | 31.8   | 27.6    |
| Dizziness            | 32            | 48.8      | 45.9   | 42.2    |
| Excessive salivation | 30.4          | 0.8       | 21.2   | 17.5    |
| Diarrhea             | 29.6          | 1.2       | 50.6   | 27.1    |

### 3.11.2 Chronic illnesses at household level

About 248 (16.5%) in the 3 counties reported that they/their family suffered from chronic illnesses. The illnesses mainly reported included cancer, diabetes, liver disease, learning difficulties, kidney disease and development disorders. Kajiado county recorded the highest rate at 166 (28%) followed by Kirinyaga

county at 73 (12.2%) and Nakuru county recording the least at 9 (2.9%).

Table 27: Chronic illnesses at household level

| Chronic illnesses                        | Responses (%) |           |        |         |
|------------------------------------------|---------------|-----------|--------|---------|
|                                          | Kajiado       | Kirinyaga | Nakuru | Average |
| Have (Yes)                               | 28            | 12.2      | 2.9    | 14.4    |
| Cancer                                   | 13.1          | 5.7       | 4.8    | 7.9     |
| Diabetes                                 | 15.2          | 12.2      | 7.4    | 11.6    |
| Liver disease                            | 8.6           | 1.5       | 4.2    | 4.8     |
| Learning difficulties                    | 2             | 0.7       | 3.9    | 2.2     |
| Kidney disease                           | 9.3           | 1.2       | 4.5    | 5.0     |
| Development disorder (mental & physical) | 0.3           | 0.8       | 5.2    | 2.1     |

The chronic illness reported by the respondents may be indicators for long term exposure to pesticides. Further studies are need to investigate whether there is an association between the reported illness and exposure to pesticides in the study area.

### 3.11.3 Pesticides and suicide

Only 97 (6.4%) reported that there have been cases of suicides with pesticides in the study areas. Kirinyaga county had the most cases at 50 (8.3%) followed by Kajiado county at 37 (6%) and Nakuru county with the least cases at 10 (3.2%). Although the results imply that pesticide suicide is not a major problem, further investigation of pesticide poisonings and suicides is needed in the study areas to understand the extent of the problem.

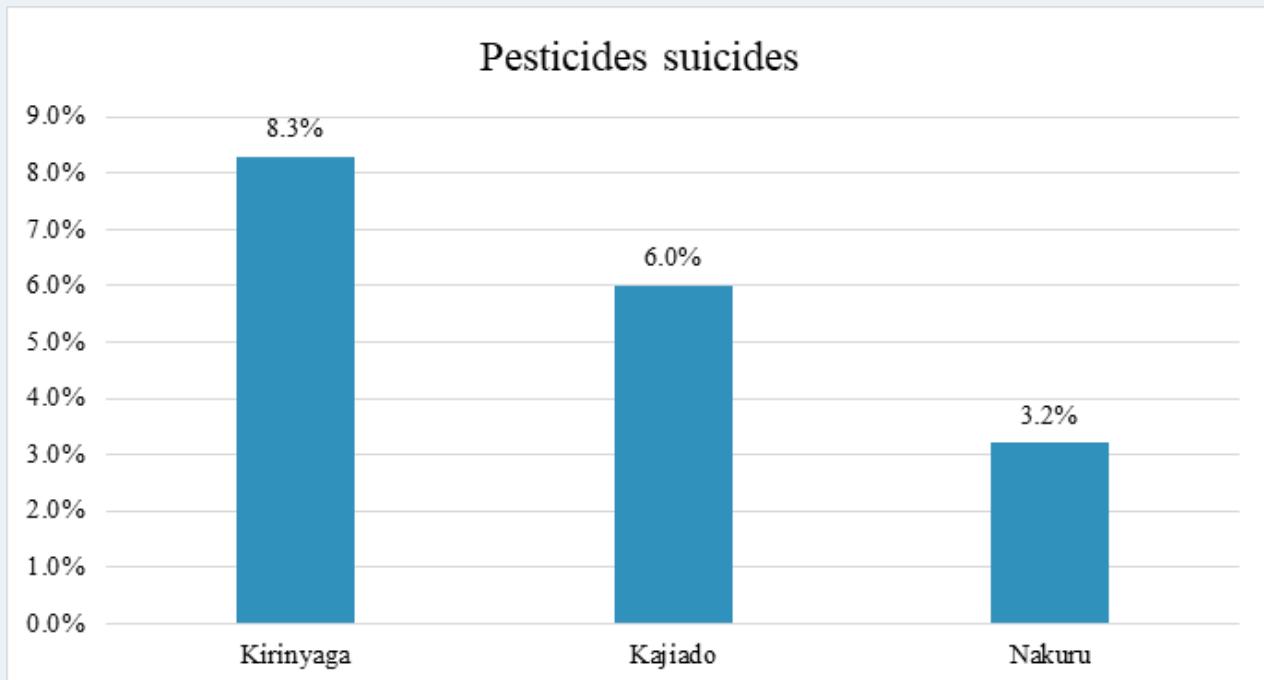



Figure 24: Pesticides suicides

## 3.12 Environmental Effects

### 3.12.1 Poisoning of wildlife

Only 155 (7.6%) of the respondents indicated that there have been cases of poisonings or killing of wild animals using pesticides in the areas. Nakuru county recorded the most cases at 52 (16.8%) of wildlife poisonings followed by Kirinyaga county at 43 (7.2%) and Kajiado county at 20 (3.3%).

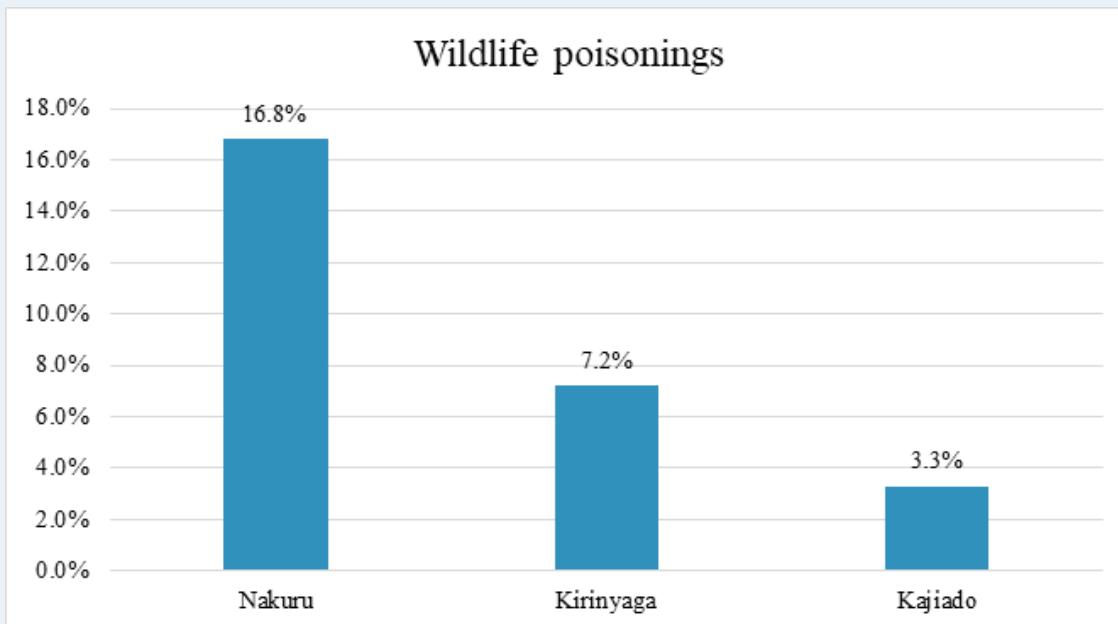



Figure 25: Wildlife poisonings

## 4 CONCLUSION AND RECOMMENDATIONS

### 4.1 Conclusions

The following conclusions can be drawn from our study:

- » **Overreliance on pesticides:** The study established an intensive use of pesticides in the study areas as nearly all the respondents reported that they used pesticides or worked in farms where pesticides were applied. Both men and women used pesticides.
- » **Widespread use of HHPs:** HHPs were widely used in the study area, and mainly included fungicides and insecticides. HHPs comprised about 32% of all the products used in the study area. Most of the HHPs are human carcinogens and reproductive toxicants while other are environmental toxicants and mutagens.
- » **Widespread use of banned pesticides:** Our study shows that pesticides banned in other jurisdictions continue to be imported and used in Kenya despite their negative impacts on human health and the environment. About 38% of the identified pesticide active ingredients were banned in other countries, with a good number of them (20%) specifically banned in the country of origin, a clear case of double standards.
- » **Illegal transborder trade:** Our study points to a problem of illegal transboundary trade of pesticides between the Kenya- Tanzania border as some pesticides (5%) used in the study area were sourced from Tanzania but not registered in Kenya, Kajiado is the hotspot of illegal trade and use of pesticides from Tanzania.
- » **High risk of exposure through various activities:** Most of the respondents engaged in activities that directly placed them at high risk of exposure such as spraying of pesticides, mixing, loading and decanting of pesticides, and re-entry into sprayed farms without regard to re-entry intervals. Others were also exposure through spray drifts as most farmers and workers sprayed pesticides with no regard to wind direction while many others lived within the farms where the spraying took place.
- » **Limited PPEs use:** Our study indicates that while many respondents used PPEs, full and proper PPEs were not used. Many other respondents, particularly those in Kajiado and Kirinyaga did not use PPEs because they were largely not available, expensive and uncomfortable.
- » **Low awareness and knowledge on hazards:** Most farmers and workers were not trained on pesticide use and handling hence had inadequate understanding of the hazards posed by pesticides.
- » **Poor pesticide management practices:** Our study shows that pesticides were poorly managed, especially in Kajiado and Kirinyaga. A significant proportion of respondents reused pesticides containers for water and food storage or packaging or decanted pesticides while burning was the main method of disposing empty containers and obsolete pesticides.
- » **Lack of proper washing facilities:** Our study shows that farmers do not have proper facilities for washing pesticide application equipment, personal protection clothing as well as bodies after spraying, increasing the risk of exposure and contamination of environment. Most facilities used included taps, irrigation drains, water containers, river, wells, ponds and lakes.
- » **Unintentional poisoning:** Our study indicate that a significant number (36%) of farmers and farm workers had directly been poisoned by pesticides in the course of their work. Others also reported that they/their family members had suffered from chronic illnesses such as diabetes and cancer, indicating potential long-term effects of pesticide exposure but requires further investigation.
- » **Potential problem of intentional poisoning:** Our study indicates a potential underlying problem of self-harm with pesticides as well as using of pesticides to intentionally poison wildlife potentially due to human-wildlife conflict particularly in Kajiado. This requires further investigation.

## 4.2 Recommendations

On the basis of the findings of the survey, the study makes the following recommendations:

1. That the Ministry of Agriculture and Pest Control Products Board (PCPB), in collaboration with ministries of health and environment and stakeholders should review and formulate policies and laws to eliminate HHPs and promote safe and affordable alternatives.
2. PCPB should review the registration of all identified highly hazardous pesticides (HHPs) and those banned in other jurisdictions but still permitted in Kenya, with a view to prohibiting or restricting their use where appropriate to protect human health and the environment
3. Stakeholders should support farmers to reduce dependency on chemical pesticides through awareness on the risks of HHPs and training in safer alternatives such as agroecology, Integrated Pest Management (IPM), and biopesticides.
4. The relevant government Ministries, Departments and Agencies (MDAs) should promote access to knowledge and information relevant to sustainable agricultural practices including pest and disease management.
5. PCPB should assess the impacts of and review registration of pesticides identified to be highly toxic to bees and aquatic organisms with the view of prohibiting or restricting their use as appropriate.
6. PCPB and National Environment Management Authority (NEMA), in partnership with the pesticide industry, should establish a national Extended Producer Responsibility (EPR) scheme for the safe management of pesticide containers and obsolete pesticides, in accordance with the 2024 EPR regulations.
7. The Ministries of Agriculture, Environment, and Health should conduct regular post-registration monitoring and surveillance of pesticide use and its impacts to identify severe and irreversible effects under local conditions, and to support evidence-based decision-making.
8. The Ministry of Agriculture and the PCPB, in collaboration with the Ministries of Health and Environment, should establish a coordinated mechanism to strengthen inter-ministerial collaboration and enhance stakeholder engagement in the management of pesticides and HHPs in Kenya.
9. The Ministry of Labor and Social Protection, through the Directorate of Occupational Safety and Health Services (DOSHS), should implement a health monitoring program for flower industry workers in Kenya to identify and protect those exposed to harmful pesticides in the workplace
10. DOSHS should establish a national database to centralize all biomonitoring reports conducted on flower industry workers by companies in Kenya. This will enhance transparency, improve access to critical health information, and support informed decision-making for worker protection.
11. There is need for collaboration between Kenya and Tanzania to curb illegal cross-border trade in pesticides. PCPB in collaboration Kenya Revenue Authority (KRA) should sensitize and train border control officers in identifying and curbing trade of illegal pesticides at border points.

## 5 REFERENCES

1. **Boedeker, W., Watts, M., Clausing, P. et al. RETRACTED ARTICLE:** *The global distribution of acute unintentional pesticide poisoning: estimations based on a systematic review.* *BMC Public Health* 20, 1875 (2020). <https://doi.org/10.1186/s12889-020-09939-0>.
2. **Food and Agriculture Organization of the United Nations (2024)** – with major processing by Our World in Data. “Total pesticide use – UN FAO” [dataset]. *Food and Agriculture Organization of the United Nations*, “*Land, Inputs and Sustainability: Pesticides Use*” [original data]. Retrieved August 21, 2025 from <https://archive.ourworldindata.org/20250718-111234/grapher/pesticide-use-tonnes.html> (archived on July 18, 2025).
3. **Food and Agriculture Organization of the United Nations (2021).** *Finding alternatives to HHPs. Experiences from African, Caribbean and Pacific Countries.* Online side event during the online segment of the COPs (29 July 2021). Available at [www.brsmeas.org/2021COPs/Sideevents/tabid/8867/language/en-US/Default.aspx](http://www.brsmeas.org/2021COPs/Sideevents/tabid/8867/language/en-US/Default.aspx). Accessed July 10, 2025.
4. **FAO (2006).** *Report of the Council of FAO. Hundred and Thirty-first Session Rome, 20-25 November 2006.* Available: <https://openknowledge.fao.org/server/api/core/bitstreams/31179a20-0900-4bcc-a577-85bb60743111/content>. Accessed July 10, 2025
5. **Food and Agriculture Organization of the United Nations**, WHO. *International Code of Conduct on Pesticide Management: guidelines on highly hazardous pesticides.* 2016. <http://www.fao.org/3/a-i5566e.pdf> Accessed July 10, 2025
6. **FAO & WHP (2016).** *International Code of Conduct on Pesticide Management. Guidelines on Highly Hazardous Pesticides.* Available at: <https://openknowledge.fao.org/server/api/core/bitstreams/7c65af6a-52ca-4e44-8c57-4303d076bea4/content> . Accessed July 10, 2025.
7. **Pesticide Action Network (PAN) International (2024a).** *PAN List of HHPs.* Available: [https://pan-international.org/wp-content/uploads/PAN\\_HHP\\_List.pdf](https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf). Accessed August 14th, 2025
8. **Pesticide Action Network (PAN) International (2024b).** *Consolidated list of banned pesticides.* Available:<https://pan-international.org/pan-international-consolidated-list-of-banned-pesticides/>. Accessed August 14th, 2025
9. **Route to Food Initiative (2023).** *Hazardous Pesticides Report.* Available at: [https://ke.boell.org/sites/default/files/2023-09/data-and-facts\\_highly-hazardous-pesticides-in-kenya-1.pdf](https://ke.boell.org/sites/default/files/2023-09/data-and-facts_highly-hazardous-pesticides-in-kenya-1.pdf). Accessed, July 10, 2025
10. **United Nations Environment Programme (2023).** *Guidelines on Alternatives to Highly Hazardous Pesticides*, Geneva.

## 6 ANNEXES

### Annex 1: List of the products and their active ingredients

| Product name        | Active ingredient and concentration                                       |
|---------------------|---------------------------------------------------------------------------|
| <b>Insecticides</b> |                                                                           |
| Abalone 18EC        | Abamectin 18g/L                                                           |
| Abamite 2% EC       | Abamectin 20g/L                                                           |
| Abasi 5 EC          | Abamectin 50g/L                                                           |
| Acetak 200SL        | Acetamiprid 200g/L                                                        |
| Acetak top 700WG    | Acetamiprid 700 g/kg                                                      |
| Achook 0.15%EC      | Azadirachtin 0.15% w/w                                                    |
| Acoster 5EC         | Abamectin 50g/L                                                           |
| Actara 25WG         | Thiamethoxam 250g/Kg                                                      |
| Actellic 25EC       | Pirimiphos-methyl 250g/L                                                  |
| Adafone             | Fosthiazate 200g/l                                                        |
| Adaforce 20EW       | Fosthiazate 200g/l                                                        |
| Afifen 10.8EC       | Pyriproxyfen 100 g/L                                                      |
| Agrimec 18 EC       | Abamectin 18g/L                                                           |
| AirForce one 25EC   | Lambda-cyhalothrin 25g/L                                                  |
| Albaz 10EC          | Alpha-cypermethrin 100g/L                                                 |
| Alfatox 10EC        | Alpha-cypermethrin 100g/L                                                 |
| Almite 2.0 EC       | Abamectin 20g/L                                                           |
| Alonze 50EC         | Abamectin 50 g/L                                                          |
| Alpha Cymba 10 EC   | Alpha-cypermethrin 100g/L                                                 |
| Alphaguard 10EC     | Alpha-cypermethrin 100g/L                                                 |
| Alphakill 100EC     | Alpha-cypermethrin 100g/L                                                 |
| Alphascope 10 EC    | Alpha-cypermethrin 100g/L                                                 |
| Alphashield 100 EC  | Alpha-cypermethrin 100EC                                                  |
| Alphasin            | Alpha-cypermethrin 100g/L                                                 |
| Alphasumu 10 EC     | Alpha-cypermethrin 100g/L                                                 |
| Altair 50WDG        | Acetamiprid 500 g/Kg                                                      |
| Amafos              | Chlorpyrifos 480g/l                                                       |
| Amaron              | Emamectin Benzoate 5% SG                                                  |
| Amazing top 100WDG  | Abamectin 20 g/Kg + Acetamiprid 80 g/Kg                                   |
| Amigad 5.7WDG       | Emamectin benzoate 57g/Kg                                                 |
| Amino Gold          | Polyalkyleneoxide modified heptamethyltrisiloxane (organosilicone) 800g/L |
| Amito 5.7WDG        | Emamectin benzoate 57g/Kg                                                 |
| Apex 40 EC          | Abamectin 10g/L, Acetamiprid 30g/L                                        |
| Apollo 50SC         | Clofentezine 500g/L                                                       |
| Applaud 40%SC       | Buprofezin 400g/L                                                         |
| Apron Star 42WS     | Thiamethoxam 20g/Kg + Metalaxy M 20g/Kg + Difenoconazole 2g/Kg            |
| Aragon 220ZC        | Thiamethoxam 126 g/L + Lambda cyhalothrin 94 g/L                          |
| Arima 30SC          | Cyenopyrafen 300g/L                                                       |
| Aster extrim 20SL   | Acetamiprid 150g/L + Cypermethrin 50g/L                                   |
| Atom 2.5EC          | Deltamethrin 25g/L                                                        |

| Product name            | Active ingredient and concentration              |
|-------------------------|--------------------------------------------------|
| Attacker 150SC          | Indoxacarb 150g/L                                |
| Avaunt 150EC            | Indoxacarb 150g/L                                |
| Avid 1.8EC              | Abamectin 18g/L                                  |
| Avirmec 1.8EC           | Abamectin 18g/L                                  |
| Barrot 700WDG           | Imidacloprid 700g/Kg                             |
| Basis 050SC             | Abamectin 50g/L                                  |
| Belt 480SC              | Flubendiamide 480g/L                             |
| Benevia TM 100D         | Cyantraniliprole 100g/L                          |
| Benocarb 100SC          | Indoxacarb 85g/L + Emamectin benzoate 15g/L      |
| Bentil 23EC             | Emamectin Benzoate 23 g/L                        |
| Bestacron 720EC         | Profenofos 720g/I                                |
| Bestox 100SC            | Alpha-Cypermethrin 100g/L                        |
| Big Mantis 300WP        | Cyromazine 50 g/L + Monosultap 250 g/L           |
| Biograde 300SL          | Tea saponin 300g/L                               |
| Biomat                  | Matrine 13g/l                                    |
| Botatox 10EC            | Alpha-cypermethrin 100g/L                        |
| Calrate 5EC             | Lambda- cyhalothrin 50g/L                        |
| Calypso 480SC           | Thiacloprid 480g/L                               |
| Campostella 330SC       | Abamectin 30g/L, Spirodiclofen 300g/L            |
| Capture 247SC           | Lambda- cyhalothrin 106g/L + Thiamethoxam 141g/L |
| Chess                   | Pymetrozine 500g/l                               |
| Chordata 10.2EC         | Abamectin 20 g/L, Pyridaben 100 g/L              |
| Click 200SL             | Imidacloprid 200g/L                              |
| Clomite 500SC           | Clofentezine 500g/L                              |
| Closer 240SC            | Sulfoxaflor 240g/L                               |
| Comgen                  |                                                  |
| Confidor 200SL          | Imidacloprid 200g/L                              |
| Confidor 70WG           | Imidacloprid 700g/l                              |
| Contest 2.3%EC          | Emamectin Benzoate 23 g/L                        |
| Coragen 20SC            | Chlorantraniliprole 200g/L                       |
| Cypertox 25EC           | Lambda cyhalothrin 25g/L                         |
| D-mek 18EC              | Abamectin 18g/L                                  |
| Danisaraba 20SC         | Cyflumetofen 200g/L                              |
| Decis 2.5EC             | Deltamethrin 25g/L                               |
| Degree max 200EC        | Alpha-cypermethrin 200 g/L                       |
| Delegate 250WG          | Spinetoram 250g/Kg                               |
| Den gold                | N/A                                              |
| Diazol 60EC             | Diazinon 600g/L                                  |
| Dimate 40EC             | Dimethoate 40%                                   |
| Dimiprid 200SL          | Imidacloprid 200g/L                              |
| Divipan                 | Dichlorvos                                       |
| Dizon 60EC              | Diazinon 600g/L                                  |
| DKDIME 40EC             | Dimethoate 40%                                   |
| Dudu - Acelamectin 5%EC | Abamectin 2% + Acetamiprid 3%                    |

| Product name           | Active ingredient and concentration                                     | Product name                | Active ingredient and concentration                 |
|------------------------|-------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------|
| Dudu Agrikill 29SC     | Chlorfenapyr 200g/L ,Emamectin benzoate 40g/L, Lambda-cyhalothrin 50g/L | GoldBan 505EC               | Chlorpyrifos 500g/l, Cypermethrin 5g/l              |
| Dudu fenapyr 100SC     | Chlorfenapyr 100g/L                                                     | Gradometer 480EC            | Chlorpyrifos 480g/L                                 |
| Dudu fenos 440Ec       | Profenofos 400g/L + cypermethrin 40g/L                                  | Hable 5WG                   | Emamectin benzoate 50g/Kg                           |
| Dudu Will 315EC        | Chlorpyrifos 300g/l+lambda -cyhalothrin 15g/L                           | Halothrin 2.5EC             | Lambda-cyhalothrin 25g/L                            |
| Dudu-Acelamectin 5% EC | Abamectin 2%, Acetamiprid 3%                                            | Halt Neo 5% WP              | Bacillus thuringiensis 150g/L                       |
| Dudumectin 5EC         | Abamectin 2%, Acetamiprid 3%                                            | Helitec                     | helicoverpa armigera SNPV8%                         |
| Duduthrin 1.75EC       | Lambda-cyhalothrin 17.5g/L                                              | Herole Plus 12SC            | Chlorfenapyr 100g/L, Emamectin Benzoate 20g/L       |
| Duduthrin 5EC          | Lambda-cyhalothrin 50g/L                                                | Hinder 500SP                | Thiocyclam hydrogen oxalate 500 g/kg                |
| Duss 10EC              | Pyriproxyfen 100g/L                                                     | Hitman-2                    | Emamectin Benzoate 15 g/L + Indox-acarb 75 g/L      |
| Dynamec 1.8EC          | Abamectin 18g/L                                                         | Indoking 300SC              | Indoxacarb 300 g/L                                  |
| EABC Admire 70WDG      | Imidacloprid 700g/kg                                                    | Jackpot 5EC                 | Lambda-cyhalothrin 50g/L                            |
| EABC VITAL 350SC       | Imidacloprid 350g/L                                                     | Karate zeon                 | Lambda-cyhalothrin 50g/L                            |
| Eco Bb                 | Beauveria bassiana strain R444                                          | Katrin 2.5%EC               | Deltamethrin 25g/L                                  |
| Eescort 19EC           | Emamectin benzoate 19g/L                                                | Kinetic 100EW               | Lambda-cyhalothrin 100g/L                           |
| Electra 120EC          | Acetamiprid 100 g/L + Emamectin Benzoate 20 g/L                         | Kingcode Elite 50EC         | Acetamiprid 35g/L, Lambda- cyhalothrin 15g/L        |
| Em-Actin 57SC          | Emamectin Benzoate 57g/L                                                | Knockout 500SC              | Clofentezine 500g/L                                 |
| Emerald 200SL          | Imidacloprid 200g/L                                                     | Konzano 50EC                | Abamectin 50g/L                                     |
| Emmaron 30SC           | Emamectin Benzoate 10g/L, Lufenuron 20g/L                               | Lambdastar 5%EC             | Lambda-cyhalothrin 5%                               |
| Endsect 150SC          | Pyriproxyfen 75g/L, Flonicamid 75g/L                                    | Lambdex                     | Lambda-cyhalothrin 50g/L                            |
| Engeo 247SC            | Thiamethoxam 141 g/L+ Lambda-cyhalothrin 106 g/L                        | Lancer 130SC                | Imidacloprid 100 g/L+ Lambda cyhalothrin 30g/L      |
| Escort 19EC            | Emamectin benzoate 19g/L                                                | Laracare 5% ME              | Lambda- cyhalothrin 50g/L                           |
| Evik 500SP             | Thiocyclam Hydrogen Oxalate 50% w/w                                     | Lasting 250SC               | Lambda-cyhalothrin 250g/L                           |
| Evisect                | Thiocyclam 50% w/w of thiocyclam-hydrogenoxalate                        | Lecatech WP                 | Lecanicillium lecanii J27                           |
| Fastac 10EC            | Alpha-cypermethrin 100g/L                                               | Legacy 5%EC                 | Lufenuron 50g/L                                     |
| Fenari 120SC           | Emamectin benzoate 20 g/L, Chlorfenapyr 100 g/L                         | Levo 2.4SL                  | Oxymatrine 2.4%                                     |
| Fidelity 400WG         | Sulfoxaflor 300 g/Kg + Spinetoram 100 g/Kg                              | Lexus 247SC                 | Lambda- cyhalothrin 106g/L + Thiamethoxam 141g/L    |
| Fireworks 90SC         | Indoxacarb 60g/L, Abamectin 30g/L                                       | Limocide                    | Orange oil                                          |
| Firm fix               | N/A                                                                     | Locus 150WG                 | Acetamiprid 120 g/Kg, Lambda-cyhalothrin 30 g/Kg    |
| Floramite 240SC        | Bifenazate 240g/L                                                       | Lotus 75%SP                 | Acephate 750 g/kg                                   |
| Flower DS 4EC          | Pyrethrins 4%                                                           | Magic 50EC                  | Malathion 500g/L                                    |
| Foscap 105GR           | Abamectin 5g/kg + Fosthiazate 100 g/kg                                  | Magicforce                  | Lambda-Cyhalothrin 15 g/L + Dimethoate 300 g/L      |
| Fulfill                | Pymetrozine 50%                                                         | Magneto 1%EC                | Azadirachtin 0.6% + Matrine 0.4%                    |
| Garland max 30WP       | Cyromazine 50g/L + Monosultap 250g/L                                    | Magnum (filwet gold liquid) | Organosilicone (Polyether modified Trisiloxane 80%) |
| General 90SC           | Emamectin benzoate 15g/l, Indoxacarb 75g/l                              | Maha Karanje Oil            |                                                     |
| Genomite 200EC         | Pyridaben 20% w/v                                                       | Mainspring 200SC            | Cyantraniliprole 200 g/L                            |
| Gladius 10SC           | Flometoquin 106 g/L                                                     | Match 050EC                 | Lufenuron 50g/L                                     |
| Golan 20SP             | Acetamiprid 200g/L                                                      | May 50EC                    | Lufenuron 50g/L                                     |
|                        |                                                                         | Medal 25WDG                 | Thiamethoxam 250g/Kg                                |
|                        |                                                                         | Metholing 90SP              | Methomyl 90% w/w                                    |
|                        |                                                                         | Mighty 50ME                 | Abamectin 50g/L                                     |
|                        |                                                                         | Mitac 20EC                  | Amitraz 200g/L                                      |
|                        |                                                                         | Mitekill 2EC                | Abamectin 20g/L                                     |

| Product name                | Active ingredient and concentration                        | Product name          | Active ingredient and concentration             |
|-----------------------------|------------------------------------------------------------|-----------------------|-------------------------------------------------|
| Miteking 1.8EC              | Abamectin 18g/L                                            | Radiant 120SC         | Spinetoram 120g/L                               |
| Mocap 10GR                  | Ethoprophos 100g/Kg                                        | Ranger 480EC          | Chlorpyrifos 480g/L                             |
| Mospilan 20SP               | Acetamiprid 200g/kg                                        | Rapid 120EC           | Acetamiprid 100g/L, Emamectin Benzoate 20g/L    |
| Movento 100SC               | Spirotetramat 100 g/l                                      | Reaper 10%EW          | Lamba-cyhalothrin 100g/L                        |
| Nano gold 280WP             | Thiocyclam Hydrogen Oxalate 250 g/kg + Acetamiprid 30 g/kg | Reeva 5EC             | Lambda- cyhalothrin 50g/L                       |
| Negatron ultra liquid       | N/A                                                        | Referee 50EC          | Lufenuron 50g/L                                 |
| Nemguard 99.9%SC            | Garlic Extract 99.9% v/v                                   | Regime 480EC          | Chlorpyrifos 480 g/L                            |
| Neudosan 51%SL              | Potassium salts of fatty acids, 510 g/L                    | Relay 150SC           | Emamectin Benzoate 50 g/L + Indox-acarb 100 g/L |
| Nimbecidine                 | Azadirachtin 0.03%                                         | Romectin 1.8EC        | Abamectin 18g/L                                 |
| Nomolt 150SC                | Teflubenzuron 150g/L                                       | Ruler 50%SP           | Cyromazine 500g/kg                              |
| Oberon speed 240SC          | Abamectin 11.4 g/L + Spiromefisen 228.6 g/L                | Runner 240SC          | Methoxyfenozide 240g/L                          |
| Occasion star 200SC         | Indoxacarb 160g/L + Emmamectin benzoate 40g/L              | Saf-t side 800EC      | Paraffin Oil 80%                                |
| Orizon 150CS                | Abamectin 30 g/L + Imidacloprid 120 g/L                    | Secure 240SC          | Chlorfenapyr 240g/L                             |
| Orthene 97% Pellet          | Acephate 970g/Kg                                           | Segatron ultra liquid | Paraffin oil 98%                                |
| Ortus 5SC                   | Fenpyroximate 50g/L                                        | Shotgun 20%SP         | Acetamiprid 200g/kg                             |
| Oshothion 50EC              | Malathion 50% w/v                                          | Silmite               | Organosilicone 100%                             |
| Otran                       | Acephate 970g/Kg                                           | Silvergold            | Organisilcone                                   |
| Ozoneem 1%EC                | Azadirachtin 1%                                            | Sivanto prime 200SL   | Flupyradifurone 200g/L                          |
| Password 5.7%WDG            | Emamectin benzoate 57 g/Kg                                 | Snow tiger 100SC      | Chlorfenapyr 100g/L                             |
| Pegasus 500SC               | Diafenthizuron 500g/L                                      | Solaris 90SC          | Indoxacarb 60g/L , Abamectin 30g/L              |
| Pentagon 50EC               | Lambda-cyhalothrin 50g/L                                   | Spidor 240SC          | Spirodiclofen 240g/L                            |
| Perfect 1.92EC              | Emamectin benzoate 19.2g/L                                 | Spidor Max 300SC      | Abamectin 30 g/l, Spirodiclofen 27 g/L          |
| Pinnacle                    | Thiamethoxam (neonicotinoid) 240 g/l                       | Starthene Plus 97%DF  | Acephate 97%                                    |
| Pirimor 50DG                | Pirimicarb 50% w/w                                         | Stirrup 257SC         | Lambda-cyhalothrin 106g/L, Thiamethoxam 141 g/L |
| PODEX - CHROMAFEN-ZIDE 5%SC |                                                            | Sulban 48EC           | Chlorpyrifos 480g/L                             |
| Polyking 440 EC             | Profenofos 400g/L + Cypermethrin 40g/L                     | Summit 120SC          | Abamectin 20 g/L , Thiamethoxam 100 g/L         |
| Power tiger 100SC           | Chlorfenapyr 100g/L                                        | Supreme IT            | bifenthrin                                      |
| Presento 200SP              | Acetamiprid 200g/Kg                                        | Sustain               | Trichoderma asperellum                          |
| President GOLD 20 DP        | Pirimiphos-methyl 18g/Kg + Deltame-thrin 2g/Kg             | Swift 5EC             | Lambda-cyhalothrin 5%                           |
| Prev-am.                    | d-limonene 60g/l                                           | Sword 200SC           | Fipronil 200 g/L                                |
| Profecron 720EC             | Profenofos 720g/l                                          | Tarantula 1.8EC       | Abamectin 18g/L                                 |
| Profen 10.8EC               | Pyriproxyfen 108g/L                                        | Taurus 500SC          | Thiocyclam hydrogen oxalate 500g/ Kg            |
| Profile 440EC               | Profenofos 400g/L, Cypermethrin 40g/L                      | Teebek                |                                                 |
| Prosper 440EC               | Profenofos 40% , Cypermethrin 4%                           | Teppeki 50WG          | Flonicamid 500g/Kg                              |
| Protap 500WP                | Buprofezin 100g/kg + Monosultap 400 g/kg                   | Thrips Kranti         |                                                 |
| Prove 1.92EC                | Emamectin benzoate 19.2g/L                                 | Thunder OD145         | Imidacloprid 100g/L, Beta-cyfluthrin 45g/L      |
| Punch                       | Abamectin 1.8% EC                                          | Tihan 175OD           | Spirotetramat 75g/L, Flubendiamide 100 g/L      |
| Pursuit 6%EC                | Emamectin benzoate 10g/L, Lambda-cyhalothrin 50g/L         | Tracer 480SC          | Spinosad 480g/L                                 |
| Pyratop 75EC                | Pyrethrin 75g/L                                            | Trigard 75WP          | Cyromazine 75% w/w                              |
| Pyretone 40EC               | Pyrethrin 4% (w/v)                                         | Trilogy 050EC         | Hydrophobic                                     |
| Quksil                      | Organosilicone 100%                                        | TRIPSO 50EC           | Lufenuron 50g/L                                 |

| Product name        | Active ingredient and concentration                                   | Product name         | Active ingredient and concentration                         |
|---------------------|-----------------------------------------------------------------------|----------------------|-------------------------------------------------------------|
| Twiga Ace 20SL      | Acetamiprid 200g/L                                                    | Bench 300EC          | Difenoconazole 150 g/L + Propiconazole 150 g/L              |
| Twigamectin         | Abamectin 18g/L                                                       | Biothane 80WP        | Mancozeb 800g/Kg                                            |
| Uphold 360SC        | Spinotera 60 g/L + Methoxyfenozide 300 g/L                            | Blight Force 72WP    | Mancozeb 640g/kg + Cymoxanil 80g/kg                         |
| Veltor 150CS        | Abamectin 30 g/L + Imidacloprid 120 g/L                               | Botathane 800WP      | Mancozeb 800g/Kg                                            |
| Velum Prime         | Fluopyram 500g/kg                                                     | Botran 500SC         | Carbendazim 500g/L                                          |
| Vendex 50EC         | Lambda-cyhalothrin 50g/L                                              | Botreat 430SC        | Tebuconazole 430g/L                                         |
| Venetrate           | Burkholderia sp. strain A396                                          | Botri act 700SC      | Thiophanate-methyl 700g/L                                   |
| Verkotin 1.8EC      | Abamectin 18g/L                                                       | Bravia 325SC         | Azoxystrobin 200g/L + Difenoconazole 125g/L                 |
| Voliam targo        | Chlorantraniliprole 45 g/L + Abamectin 18g/L                          | Bugati 500SC         | Azoxystrobin 200 g/L + Tebuconazole 300 g/L                 |
| Voltage 5EC         | Lambda-cyhalothrin 50g/L                                              | Carbozim 500SC       | Carbendazim 500g/L                                          |
| Wilcron 720EC       | Profenofos 720g/L                                                     | Caretaker duo 300EC  | Difenoconazole 150 g/L + Propiconazole 150 g/L              |
| Winner 100EC        | Deltamethrin 100 g/L                                                  | Carzal 250EC         | Pyraclostrobin 250 g/L                                      |
| Zythum 30WP         | Cyromazine 50g/L + Monosultap 250g/L                                  | Champflo             | Copper hydroxide 42.74% equivalent to 24.4% metallic copper |
| <b>Fungicides</b>   |                                                                       |                      |                                                             |
| Absolute 400SC      | Azoxystrobin 250 g/L + Difenoconazole 150 g/L                         | Champion 50WP        | Cupric hydroxide 77% (Equivalent to 50% Metallic Copper)    |
| Absolute star 400SC | Azoxystrobin 250 g/L + Difenoconazole 150 g/L                         | Chariot 500SC        | Carbendazim 500g/L                                          |
| Absolute Star 500SC | Azoxystrobin 250 g/L + Difenoconazole 150 g/L                         | Chloroforce 500SC    | Chlorothalonil 500g/l                                       |
| Acrobat MZ 69%WP    | Dimethomorph 90g/Kg + Mancozeb 600g/Kg                                | Collis 300SC         | Boscalid 200g/L + Kresoxim-methyl 100g/L                    |
| Afribat 69WP        | Dimethomorph 9% + Mancozeb 60%                                        | Combremix 50WP       | Copper oxychloride 500g/kg                                  |
| Afrizeb Super 50WP  | Thiophanate-methyl 150g/kg + Mancozeb 350g/kg                         | Consento 450SC       | Fenamidone 75g/L + Propamocarb hydrochloride 375 g/L        |
| Agrilax 72WP        | Metalaxyl 8% + Mancozeb 64%                                           | Control 70WDG        | Thiophanate methyl 70%w/w                                   |
| Agrixy 407SL        | Metalaxyl 70g/L + Mono & Di-potassium salts of phosphoric acid 400g/L | Copchem 50WP         | Copper Oxychloride 50% Metallic Copper                      |
| Agromax 720WP       | Cymoxanil 80g/l + Mancozeb 640g/l                                     | Covver 76WP          | Cymoxanil 700g/Kg + propineb 60g/Kg                         |
| Agvanta 500SC       | Azoxystrobin 250g/L + Flutriafol 250g/L                               | Cuprocaffaro 37.5WDG | Copper Oxychloride 37.5%                                    |
| Amidil 68WDG        | Metalaxyl-M-40g/Kg + 640g/Kg Mancozeb                                 | Curfew 100EC         | Penconazole 100g/L                                          |
| Amistar 250SC       | Azoxystrobin 250g/l                                                   | Cynara 72WP          | Mancozeb 640g/Kg + Cymoxanil 80g/Kg                         |
| Antracol 70WP       | Propineb 70% m/m                                                      | Dachlor 720SC        | Chlorothalonil 720g/kg                                      |
| Apron star 42WS     | Thiamethoxam 20g/Kg + Metalaxyl M 20g/Kg + Difenoconazole 2g/Kg       | Daconil 720SC        | Chlorothalonil 720g/L                                       |
| Atmos 200SC         | Cyazofamid 200 g/L                                                    | Devisulphur 80WP     | Sulphur 800g/Kg                                             |
| Autogear 25%WP      | Metalaxyl 150g/kg + Propamocarb Hydrochloride 100g/kg                 | Discovery 400SC      | Flusilazole 125g/L + Carbendazim 275g/L                     |
| Azobin 325SC        | Azoxystrobin 200g/L + Difenoconazole 125g/L                           | Dolphin 260WDG       | Diethofencarb 160 g/kg + Pyrimethanil 100 g/kg              |
| Azolaxyl 390SC      | Azoxystrobin 282 g/L + Metalaxyl-M 108 g/L                            | Domain 25%EC         | Difenoconazole 250g/L                                       |
| Azoxi top 325SC     | Azoxystrobin 200g/L + Difenoconazole 125g/L                           | Downlightor 72WP     | Mancozeb 64% + Cymoxanil 8%                                 |
| Banjo 500SC         | Fluazinam 500g/L                                                      | Eazole 250EC         | Tebuconazole 250g/L                                         |
| Bellis 38%WG        | Boscalid 252g/Kg + Pyraclostrobin 128g/Kg                             | Effect 700WP         | Thiophanate-methyl 700 g/kg                                 |
|                     |                                                                       | Emthane 45WP         | Mancozeb 800g/Kg                                            |
|                     |                                                                       | Enrich               | Di-bromo di-nitro propane 1, 3 diol                         |
|                     |                                                                       | Enrich BM            | Bronopol 27%w/w                                             |
|                     |                                                                       | Equation pro         | Famoxadime 225g/Kg + Cymoxanil 300g/L                       |

| Product name           | Active ingredient and concentration                              | Product name         | Active ingredient and concentration                |
|------------------------|------------------------------------------------------------------|----------------------|----------------------------------------------------|
| Eupirimate 25EC        | Bupirimate 250g/L                                                | Milestone 250SC      | Azoxystrobin 250g/L                                |
| Eurothane 800WP        | Mancozeb 800g/Kg                                                 | Milraz 76WP          | Propineb 70% + Cymoxanil 6%                        |
| Evade 80WP             | Mancozeb 800g/Kg                                                 | Milthane Super 80%WP | Mancozeb 800g/Kg                                   |
| Evito T 477SC          | Fluoxastrobin 200 g/L + Tebuconazole 277g/L                      | Mistress 72WP        | Cymoxanil 8% + Mancozeb 64%                        |
| Falcon 430SC           | Tebuconazole 430 g/L                                             | Moithane 800WP       | Mancozeb 800g/Kg                                   |
| Farmerzeb 80WP         | Mancozeb 800g/Kg                                                 | Nativo 300SC         | Trifloxystrobin 100 g/L + and Tebuconazole 200g/L  |
| Fivestar 325SC         | Difenoconazole 125 g/L + Azoxystrobin 200 g/L                    | Ngumi 500SC          | Carbendazim 500g/L                                 |
| Folicur 250EW          | Tebuconazole 250g/L                                              | Nimrod 25EC          | Bupirimate 250g/L                                  |
| Fortress gold 72WP     | Mancozeb 640g/Kg + Cymoxanil 80g/Kg                              | Nordox Express 720WP | Copper (II) oxide 600 g/Kg + Dimethomorph 120 g/Kg |
| Fostonic 80WP          | Fosetyl-Aluminium 833.3g/Kg                                      | Nordox super 75WP    | Cuprous Oxide (Equivalent to 75% metallic copper)  |
| Fuginex                | Pyrimethanil 400g/L                                              | Noviguard 72%WP      | Mancozeb 640g/kg + Cymoxanil 80g/kg                |
| Fungiwil 50SC          | Hexaconazole 50g/l                                               | Orizole 250EC        | Tebuconazole 250g/L                                |
| Fungo force 72WP       | Metalaxyl 8% +mancozeb 64% WP                                    | Ortiva 250SC         | Azoxystrobin 250g/L                                |
| Funguran OH 50WP       | Copper hydroxide 77% w/w equivalent to 50% metallic copper       | Ortiva top 325SC     | Azoxystrobin 250g/L+Difenoconazole 125g/L          |
| Gearlock tarbo 250WP   | Metalaxyl 150g/L + Propamocarb hydrochloride 100g/Kg             | Orvego TM 525SC      | Dimethomorph 225g/L+Ametoctradin 300g/L            |
| Gillan N 60WG          | Azoxystrobin 200 g/kg + Dimethomorph 400 g/Kg                    | Oshothane 80WP       | Mancozeb 800g/Kg                                   |
| Goldazim 500SC         | Carbendazim 500g/L                                               | Oshothane plus       | Mancozeb 750g/Kg                                   |
| Green cop 500WP        | Copper oxychloride, 500g/kg                                      | Othello 25WDG        | Azoxystrobin 250g/kg                               |
| Hetor 72WP             | Mancozeb 680g/kg + Metalaxyl 80g/kg                              | Overall 500SC        | Iprodione 500g/L                                   |
| Impulse 500EC          | Spiroxamine 500g/L                                               | Pearl 500SC          | Carbendazim 500g/L                                 |
| Infinito 687.5SC       | Fluopicolide 62.5g/L+ Propamocarb hydrochloride 625g/L           | Picatina Flora 250SC | Pydiflumetofen 100 g/L + Fludioxonil 150 g/L       |
| Iperion 50WP           | Copper Oxychloride - 85% equivalent to 50% metallic copper       | Piranah 200SC        | Prochloraz 100 g/L + Iprodione 100 g/L             |
| Isacop 50WP            | Copper Oxychloride 85% Equivalent to 50% Metallic Copper         | Polar 50 WSG         | Polyoxin AL (Complex 50% w/w)                      |
| Kenthane 800WP         | Mancozeb 800g/Kg                                                 | Potphos 500SL        | Potassium phosphite 500 g/L                        |
| Klassic 5%EC           | Hexaconazole 50g/L                                               | Powerdif 250EC       | Difenoconazole 250mg/L                             |
| Komesha 76WP           | Propineb 700 g/kg + Cymoxanil 60 g/kg                            | Priaxor 225EC        | Fluxapyroxad 75 g/L + Pyraclostrobin 150 g/L       |
| Kusabi 300SC           | Pyriofenone 300 g/L                                              | Proactive 300EC      | Difenoconazole 150 g/L + Propiconazole 150 g/L     |
| Luna sensation 500SC   | Fluopyram 250g/L + Trifloxystrobin 250g/L                        | Procure 480SC        | Triflumizole 480gm/L                               |
| Luna tranquility 500SC | Fluopyram 125g/L + Pyrimethanil 375g/L                           | Prolectus 50WG       | Fenpyrazamine 500g/kg                              |
| Mancovil 5SC           | Hexaconazole 5% SC                                               | Propeller 722SL      | Propamocarb hydrochloride 722 g/L                  |
| Master line            | Calcium 302%+7%+6%boron                                          | Protacol 80WP        | Propineb 800 g/kg                                  |
| Mastercop 60SC         | Copper Sulphate Pentahydrate 236 g/L equivalent to 60 g/L copper | Protect combi 280SC  | Azoxystrobin 200 g/L + Cyproconazole 80g/L         |
| Masterkinga 72WP       | Mancozeb 640g/kg+Cymoxanil 80g                                   | Quadris 50WG         | Azoxystrobin 500g/Kg                               |
| Matco 72WP             | Metalaxyl 80g/Kg + Mancozeb 640g/Kg                              | Raincozeb 80WP       | Mancozeb 800g/Kg                                   |
| Melody duo 69WG        | Propineb 600g/Kg + Iprovalicarb 90g/Kg                           | Ransom 600WP         | Carbendazim 570 g/Kg + Triadimefon 30g/Kg          |
| Meltatox 385EC         | Dodemorph-Acetate 385g/L                                         | Regain               | Bacillus subtilis BS-01 1x1010 cfu/ml)             |
| Metaprop 25%WP         | Metalaxyl 150g/kg + Propamocarb hydrochloride 100g/kg            | Revus 250SC          | Mandipropamid 250g/L                               |
|                        |                                                                  | Ridomil gold MZ 68WG | Metalaxyl-M 40g/Kg + Mancozeb 640g/Kg              |
|                        |                                                                  | Rodazim 50SC         | Carbendazim 500g/L                                 |

| Product name            | Active ingredient and concentration                          | Product name        | Active ingredient and concentration                                       |
|-------------------------|--------------------------------------------------------------|---------------------|---------------------------------------------------------------------------|
| Rovral                  | Iprodione 250g/L                                             | Tythine 80WP        | Mancozeb 80g/L                                                            |
| SABCOP - 50             | Copper Oxychloride 50% WP                                    | UNIGO 50% SC        | Fluazinam 400 g/L + Metalaxyl-M 100 g/L                                   |
| Samaya kop 50WP         | Copper Oxychloride - 85%                                     | Victory 72WP        | Metalaxyl 80g/Kg + Mancozeb 640g/Kg                                       |
| Saplas 500SL            | Polyoxin B 340g/L                                            | Vidalia 69WP        | Mancozeb 600g/kg + Dimethomorph 90g/kg                                    |
| Scala 40SC              | Pyrimethanil 400g/L                                          | Vitra 40WG          | Copper hydroxide 66.7% w/w                                                |
| Score 250EC             | Difenoconazole 250g/L                                        | Vondozeb 75DG       | Mancozeb 750g/Kg                                                          |
| Senator 800WP           | Mancozeb 800g/Kg                                             | Wetsulf             | Sulphur 80% w/w                                                           |
| Senstrobin 25WDG        | Azoxystrobin 250g/Kg                                         | Wetsulf jet 80%WDG  | Sulfur 800 g/kg                                                           |
| Serenade ASO            | Bacillus amyloliquefaciens strain QST 713 13.96 g/L          | Zetanil 76WP        | Mancozeb 700g/kg + Cymoxanil 60g/kg                                       |
| Silvzole 43OSC          | Tebuconazole 430 g/L                                         | Zodiac star 30WDG   | Azoxystrobin 200g/kg + Dimethomorph 100g/kg                               |
| SKIPPER 720WP           | Mancozeb 64% + Cymoxanil 8%                                  | Zyban 500SC         | Carbendazim 500g/L                                                        |
| Skysil Gold             | Organosilicone 100%                                          | ZYBAN 500SC         | Carbendazim 500g/L                                                        |
| Snow Power 45%WP        | Cymoxanil 4%, mancozeb12%, copper oxychloride 29%            | Herbicides          |                                                                           |
| Solvit 175EW            | Fenpropidin 125g/L+ Penconazole 50g/L                        | Agil 100EC          | Propaquizafop 100g/L                                                      |
| Sphinx extra            | Folpet 600g/kg + Dimethomorph 113g/kg                        | Agromine 860 SL     | 2,4 D-Amine salt 860 g/L                                                  |
| Spinex 500EC            | Spiroxamine 500g/L                                           | Ambar 480SC         | Metribuzin 480g/L                                                         |
| Stage 250EW             | Tebuconazole 250g/L                                          | Amino Care 720SL    | 2,4 Dimethyl ammonium salt 720g/l                                         |
| StarGem 80WP            | Mancozeb 800g/Kg                                             | Atrazine            | Atrazine 4%                                                               |
| STEEL EXTRA 50WP        | Copper Oxychloride 50% w/w                                   | Axial 045EC         | Pinodoxaden 45g/L + Cloquintocet Mexyl                                    |
| Sulfolac 80WP           | Sulphur 800 g/kg                                             | B-safi 180EC        | Fomesafen 55 g/L + Quizalop-p-ethyl 15 g/L + Clomazone 110 g/L            |
| Sulphur gold 80WDG      | Sulphur 800g/kg                                              | Bailout 330EC       | Pendimethalin 330 g/L                                                     |
| Sunscreen Film          | N/A                                                          | Basta 200SL         | Glufosinate - Ammonium 200g/L                                             |
| Supakinga 72WP          | Mancozeb 640g/kg + Cymoxanil 80g/kg                          | Beanpro 480SL       | Bentazone 480g/L                                                          |
| Supercop                | Copper sulphate 50g/l                                        | Beansclean 480SL    | Bentazone 480g/L                                                          |
| Tabibu 500SC            | Thiophanate Methyl 400g/L + Hexaconazole 100g/L              | Bentagran Top 240EC | Bentazone 150 g/L + Fomesafen 70 g/L + Quizalofop- p ethyl 20 g/L         |
| Tajiri 720WP            | Mancozeb 64% + Cymoxanil 8%                                  | Burnwid 480SL       | Glyphosate acid 360g/L (as Isopropylamine salt 480g/L)                    |
| Tancap 80WG             | Captan 800 g/Kg                                              | Catapult 480SL      | Glyphosate IPA Salt 480g/L                                                |
| Taylor 720WP            | Mancozeb 640 g/Kg + Cymoxanil 80 g/Kg                        | Clamp down 480SL    | Glyphosate acid 360g/L(as Isopropylamine salt 480g/L)                     |
| Tedda 25EW              | Tebuconazole 250g/L                                          | Commander 240 EC    | Oxyfluorfen 240g/L                                                        |
| Teldor 50WG             | Fenhexamid 500g/Kg                                           | Cropoxone           | Paraquat dichloride 200g/l                                                |
| Thiovit Jet             | Sulphur (elemental) 80%w/w                                   | D-AMINE 72SL        | Dimethyl amine salt of 2,4 Dimechlophenyl acetic acid                     |
| Thrive 25%wp            | Metalaxyl 150g/kg + Propamocarb Hydrochloride 100g/kg        | Dicopur d 720SL     | Dimethylamine salt of 2,4- Dichlorophenyl Acetic Acid (2,4-D)-720g/L salt |
| Topaz 25EW              | Tebuconazole 25% w/w                                         | Dual gold 960EC     | Metolaclor-S 960g/L                                                       |
| Topcop 50%WP            | Copper Oxychloride 85%                                       | Force up 41%SL      | Glyphosate-isopropylamine salt 41%                                        |
| Topguard 500SC          | Thiophanate-methyl 500g/kg                                   | Force up 480SL      | Glyphosate 480g/l                                                         |
| Topwonder 500SC         | Thiophanate-methyl 500 g/L                                   | Galigan 240EC       | Oxyfluorfen 240g/L                                                        |
| Trinity Gold 452WP      | Copper oxychloride 290g/L + Cymoxanil 42g/L+ Mancozeb 120g/L | Glycel 480SL        | Glyphosate 480g/L (as Isopropylamine salt 40.60% w/w                      |
| Trustmate extreme 300EC | Bupirimate 200 g/L + Penconazole 100 g/L                     | Glypro 480SL        | Glyphosate acid 360g/L                                                    |
| Twiga - epox 250SC      | Epoxiconazole 250g/L                                         |                     |                                                                           |
| Twigalaxy 720WP         | Mancozeb 640g/Kg+ Metalaxyl 80g/Kg                           |                     |                                                                           |
| Twigathalonil 720SC     | Chlorothalonil 720g/L                                        |                     |                                                                           |

| Product name          | Active ingredient and concentration                                    |
|-----------------------|------------------------------------------------------------------------|
| Governor 580SE        | Acetochlor 340g/L + Mesotrione 40g/L + Atrazine 200g/L                 |
| Herbikill 200SL       | Paraquat dichloride 20% w/v                                            |
| Herbstar 200SL        | Paraquat dichloride 27.6%                                              |
| Hotline 450SC         | Linuron 450g/l                                                         |
| J2, 4-D 860SL         | 2,4 Dimethylamine 860g/l                                               |
| Jangwa700WP           | Metribuzin 700g/kg                                                     |
| Kausha 480SL          | Glyphosate acid 360g/L (as Isopropylamine salt 480g/L)                 |
| Keepwatch 450CS       | Pendimethalin 450g/L                                                   |
| Kolopa 3000D          | Nicosulfuron 30 g/L + Mesotrione 70 g/L + Atrazine 200 g/L             |
| Lockdown 720EC        | Metolachlor 720 g/L                                                    |
| Maguguma Top 500SC    | Atrazine 200g/L + Metolachlor 300g/L                                   |
| Maizepro 500SC        | Atrazine 200g/L + Metolachlor 300g/L                                   |
| Mr bean plus          | Bentazone 480g/L                                                       |
| Novisate 480SL        | Glyphosate 480g/l                                                      |
| Oxen Gold 515EC       | Pendimethalin 175g/L + Oxyfluorfen 40g/L + Acetochlor 300g/L           |
| Oxyfen 24%EC          | Oxyfluorfen 240g/l                                                     |
| Paraeforce            | Paraquat dichloride 200g/l                                             |
| Parastar 200SL        | Paraquat dichloride 200g/L                                             |
| Perfecto 450SE        | Atrazine 200g/L + Metolachlor 250 g/L                                  |
| Pirata 100SC          | Bispyribac-sodium 100g/L                                               |
| Potasun 5EC           | Quizalofop-P-Ethyl 50 g/L                                              |
| Primagram gold 660SC  | S-Metalochlor 290g/L + Atrazine 370g/L                                 |
| Ridout 480SL          | Glyphosate 480g/l                                                      |
| Rondo 480SL           | Glyphosate 480g/l                                                      |
| Round Up Turbo        | Glyphosate acid 450g/L                                                 |
| Roundup 360SC         | Glyphosate acid 360 g/L (express. Potassium salt of glyphosate 441g/L) |
| Sencor 480SC          | Metribuzin 480g/L                                                      |
| Serbian 75wg          | Halosulfuron 750g/kg                                                   |
| Spencer 260OD         | Mesotrione 40g/L + Nicosulfuron 20g/L + Atrazine 200 g/L               |
| Tingatinga 380SC      | Atrazine 380g/l                                                        |
| Tingatinga top 500SC  | Atrazine 200g/L + Metolachlor 300g/L                                   |
| Touchdown 450SL       | Glyphosate acid 450g/L                                                 |
| Touchdown forte 500SL | Glyphosate 500g/L                                                      |
| Touchdown forte 500SL | Glyphosate 500g/L                                                      |
| Twigamethalin 50EC    | Pendimethalin 500g/L                                                   |
| Weedal 480SL          | Glyphosate IPA salt 480g/L                                             |
| Weedex 41%SL          | Glyphosate IPA Salt, 41% w/v                                           |
| Weedless 480SL        | Glyphosate IPA salt 480g/L                                             |
| Weedsol               | Isopropylamine salt of glyphosate 480g/l                               |

| Product name             | Active ingredient and concentration                                                                                                           |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Widamine 720AS           | 2,4 Dimethyl ammonium salt 720g/l                                                                                                             |
| <b>Growth regulators</b> |                                                                                                                                               |
| Azatone                  | Alpha naphthalene acetic acid                                                                                                                 |
| Biozyme                  | Natural plant extracts 78%                                                                                                                    |
| Citi shooter             | Cytokinins, auxins                                                                                                                            |
| Cytomone                 | Cyto hormones                                                                                                                                 |
| Fastfos                  | Mono&Di potassium phosphate                                                                                                                   |
| Flowatone 4.5% SL        | synthetic auxins                                                                                                                              |
| Flower plus              | Alpha naphthalene acetic acid                                                                                                                 |
| Flowergal                | Boron 0.0035%,copper 0.088%,molybdenum 0.0012%zinc0.088% and alpha naphthalene acetic acid 4.5%                                               |
| G- ONE                   | Fulvic acid                                                                                                                                   |
| Green max                | Zinc, Alpha                                                                                                                                   |
| Liquid gypsum            | Gypsum                                                                                                                                        |
| Megagrow                 | Giberellic acid                                                                                                                               |
| Nutri Genic              | Potassium,Auxins                                                                                                                              |
| Osa tuber                | Stabilized orthosilicic acid (OSA) measured as SL,K,Zn,Mo,inositol,stabilisers,osmolute,Dm water Ph(1% solution)                              |
| Planofix                 | Alpha Naphthyl Acetic Acid 4.5 SL (4.5 % w/w)                                                                                                 |
| Plantone 140SL           | Sodium-1-naphthyl acetic acid 140 g/L                                                                                                         |
| Pluto tembe 200WG        | Gibberellic acid 200g/Kg                                                                                                                      |
| Tivag 40SL               | Gibberelic Acid 40 g/L                                                                                                                        |
| Verno                    | Copper 300kg + Zinc 300g/kg                                                                                                                   |
| Others used              |                                                                                                                                               |
| Agraisc                  | Alkylphenol ethene oxide condensate 87%w/w                                                                                                    |
| Amisil                   | Polyether trisiloxane (organosilicone) 800g/L                                                                                                 |
| Aquawet 15SL             | Nonylphenol ethoxylate 15%                                                                                                                    |
| Biomat                   | Matrine 13g/l                                                                                                                                 |
| Edmond gold              | Organosilicone 100% (Polyalkyleneoxide modified heptamethyltrisiloxane 83% w/w + allyl and propenyl isomers of the polyalkyleneoxide 17% w/w) |
| Goldenleaf               | Polyalkylene oxide modified heptamethyl trisiloxane 800g/L                                                                                    |
| HiSPEID 100SC            | Organosilicone 100% (polyalkyleneoxide modified methylorganosilicone)                                                                         |
| Integra                  | Polyalkylene oxide modified heptamethyl trisiloxane 800g/L                                                                                    |
| Silwet Gold              | Trisiloxane alkoxylate (organosilicone) 80%w/w + polyalkyleneoxides 20%w/w                                                                    |
| Skysil Gold              | Organosilicone 100%                                                                                                                           |
| Wangle liquid            | Polyether-modified trisiloxane 850 g/L                                                                                                        |

## 5.2 Annex 2: Manufacturers and country of origin

| Manufacturer                                   | Country of Origin           | Manufacturer                                  | Country of Origin |
|------------------------------------------------|-----------------------------|-----------------------------------------------|-------------------|
| Adama Agan Ltd                                 | Israel                      | E.I. Du Pont Nemours & Co                     | USA               |
| Adama Makhteshim Ltd                           | Israel, Netherlands         | EX Biosciences Europe N.V                     | Belgium           |
| Agria SA                                       | Bulgaria                    | Fluence Topsen Co. Ltd                        | China             |
| Agrimore Enterprise Ltd                        | China                       | FMC Chemicals sprl                            | Belgium           |
| Agriscience                                    | USA                         | FMC Corporation                               | USA               |
| Agroshine Hangzhou Chemical Co. Ltd            | China                       | FMC Mobile Manufacturing Center               | USA               |
| Agrostulln GmbH                                | Germany                     | Gharda Chemicals Ltd                          | India             |
| Agrow Allied Ventures PVT Ltd                  | India                       | Goldchance Fluence Industries Ltd             | China             |
| Albaugh Europe Sarl                            | Switzerland                 | Haili Guixi Chemical Pesticide Co., Ltd       | China             |
| Amoolya                                        | India                       | Hailir Pesticides & Chemicals Group Co. Ltd.  | China             |
| Anhui Fengle Agrochemical Co., Limited         | China                       | Hangzhou Jike Trade Co. Ltd                   | China             |
| Anhui Guangxin Agrochemical Co. Ltd            | China                       | Hangzhou Udragon Chemical Co. Ltd             | China             |
| Anhui Huaxing Chemical Industry Co., Ltd       | China                       | Hebei Lishijie Biotechnlogy Co Ltd            | China             |
| Anhui Zhongbang Biological Engineering Co Ltd  | China                       | Hebei Shuangji Chemical Co., Ltd              | China             |
| Anhui zhongshan chemical industry group co ltd | China                       | Hebei Sony Chemicals Ltd                      | China             |
| Arysta LifeScience                             | India, Belgium, USA, France | Hebei Vian Biochem Co. Ltd                    | China             |
| Ashoka Agri Solutions, India                   | India                       | Hebei Xingbai Agricultural Technology Co. Ltd | China             |
| Asiatic Agricultural Industries                | Singapore                   | Hemani Industries Ltd                         | India             |
| Atul Limited                                   | India                       | Hengshui Jingmei Chemical Industry Co Ltd     | China             |
| BASF                                           | France, Germany, USA        | Henyang Sciencreat Chemicals Co Ltd           | China             |
| Bayer AG                                       | Belgium, Germany, Mexico    | Heranba Industries Ltd                        | India             |
| Beijing Sinofarm Technology Co Ltd             | China                       | Hipak Africa co                               | N/A               |
| Beijing Yoloo Bio-Technology Corp., Ltd        | China                       | Huayang China Ltd                             | China             |
| Bharat Insecticide Ltd                         | India                       | Hubei Lvtiandi Technology Co Ltd              |                   |
| Bios Cropcare PVT LVC                          | India                       | Hubei Sanonda International                   | China             |
| Brandt Consolidated Inc                        | USA                         | Hunan Farmland Crop Science                   | China             |
| CAC Nantong Chemical Co. Ltd                   | China                       | Indofil Industries Ltd                        | India             |
| Cerexagri S.A.                                 | France                      | Industrias Quimicas del Valles, S.A.          | Spain             |
| Changzhou Wintafone Chemicals Co. Ltd          | China                       | Ingenieria Industrial, S.A. de C.V.           | Mexico            |
| Cong Ty TNHH Alfa (Sai Gon)                    | Vietnam                     | Invecta-Agro Ltd                              | Cyprus            |
| Coromandel International Ltd                   | India                       | IOMCC Private Ltd                             | India             |
| Corteva Agriscience, LLC                       | USA, UK                     | Isago S.P.A.                                  | Italy             |
| Cosaco GmbH                                    | Germany                     | Ishihara Sangyo Kaisha Ltd                    | Japan             |
| Crop care enterprises                          | N/A                         | JADE                                          | UAE               |
| Crystal Crop Protection                        | China                       | Jiangsu Lanfeng Biochemical Co., Ltd          | China             |
| Dow Agrosciences                               | USA                         | Jiangsu Aijin Agrochemical Co., Ltd           | China             |
| Du Pont De Nemours                             | France                      |                                               |                   |
| Du pont Platte Chemical Company                | USA                         |                                               |                   |
| DuPont Electronic Polymers                     | USA                         |                                               |                   |

| Manufacturer                                   | Country of Origin | Manufacturer                                       | Country of Origin |
|------------------------------------------------|-------------------|----------------------------------------------------|-------------------|
| Jiangsu Baoling Chemical Co. Ltd               | China             | Kingtai Chemicals Co. Ltd                          | China             |
| Jiangsu Fengdeng Pesticide Co. Ltd             | China             | Kundan Pestichem Pvt. Ltd                          | India             |
| Jiangsu Fengshan Group Co. Ltd                 | China             | Laoting Yoloo Bio-Technology Co. Ltd               | China             |
| Jiangsu Fengyuan Biological Engineering Co Ltd | China             | Limin Chemical Co., Ltd                            | China             |
| Jiangsu Flag Chemical Industry Co. Ltd         | China             | M/S Agrow Allied Ventures Pvt. Ltd                 | India             |
| Jiangsu Huangma Agrochemicals Co. Ltd          | China             | M/S Shyam Chemicals PVT. Ltd                       | India             |
| Jiangsu Huifeng Agrochemical Co. Ltd           | China             | Makdavid Chemical Industry                         | China             |
| Jiangsu Inter-China Group Corporation          | China             | Meghmani Organics Ltd.                             | India             |
| Jiangsu International Group Limited            | UAE               | Momentive Performance Material GmbH                | Germany           |
| Jiangsu Kuaida Agrochemical Co., Ltd           | China             | NACL Industries Limited                            | India             |
| Jiangsu Lanfeng Biochemical Co., Ltd           | China             | Nanjing Agrochemica                                | China             |
| Jiangsu New Energy Crop Protection Co Ltd      | China             | Nanjing Essence Fine-Chemical Co., Ltd             | China             |
| Jiangsu Qiaoji Biochem co Ltd                  | China             | Nanjing Fengshan Chemicals Co. Ltd                 | China             |
| Jiangsu Sandi Chemistry Co Ltd                 | China             | Nantong Baoye Chemical Co Ltd                      | China             |
| Jiangsu Sevencontinent Green Chemical Co. Ltd  | China             | Nantong Jiangshan agrochemical & chemicals limited | China             |
| Jiangsu Subin Agrochemical Co., Ltd            | China             | Nantong Shizhuang Chemical Co. Ltd                 | China             |
| Jiangsu Tianrong Group Co.,Ltd                 | China             | Nantong Weilike Chemical Co Ltd                    | China             |
| Jiangsu United Agrochemical Co. Ltd            | China             | National EST                                       | Saudi Arabia      |
| Jiangxi Hito Chemical Co Ltd                   | China             | Nihon Nohyako Co. Ltd                              | Japan, Germany    |
| Jiangxi Sprin Agrichemical Co. Ltd             | China             | Ningbo Sunjoy Agroscience Co. Ltd                  | China             |
| Jiangxi Sprin Agrichemical Co. Ltd.            | China             | Ningbo Yihwei Chemical Co. Ltd                     | China             |
| Jiangxi Zhongxun Agro-Chemical Co. Ltd         | China             | Ningxia Wynca Technology Co Ltd                    | China             |
| Jiangxia Heyi chemicals Co. Ltd                | China             | Nippon Kayaku Co. Ltd                              | Japan             |
| Jiangyin Milagro                               | China             | Nippon Soda Co.                                    | Japan             |
| Jiangyin Milagro Chemical Co Ltd               | China             | Nissan Chemical Industries Ltd                     | Japan             |
| Jinan Shibang Agrochem Co. Ltd                 | China             | Nordox Industrier AS                               | Norway            |
| Jingbo Agrochemical Technology Co. Ltd         | China             | Nufarm Gmbh & Co                                   | Austria           |
| Jizhou Kaiming Pesticide Co., Ltd              | China             | Oasis AgroSciences Ltd                             | China             |
| Kaken Pharmaceutical Co. Ltd                   | Japan             | OAT Agro Co. Ltd                                   | Japan             |
| Kenvos Biotech Co., Ltd                        | China             | Osho Chemical Industries Ltd                       | Kenya             |
| King Chemical Company Limited                  | China             | Parijat industries Ltd                             | India             |
|                                                |                   | Platform Agrotech Co Ltd                           | China             |
|                                                |                   | PRM life science PVT Ltd                           | India             |
|                                                |                   | Qingdao Audis Bio-tech Co., Ltd                    | China             |
|                                                |                   | Qingdao Hibong industrial                          | China             |
|                                                |                   | Qingdao Higrow Chemicals Co Ltd                    | China             |
|                                                |                   | Qingdao KXY Chemical Co Ltd                        | China             |
|                                                |                   | Qingdao star Cropscience Co. Ltd                   | China             |
|                                                |                   | Raj Petro Specialities PVT Ltd                     | India             |

| Manufacturer                                      | Country of Origin | Manufacturer                                                      | Country of Origin                            |
|---------------------------------------------------|-------------------|-------------------------------------------------------------------|----------------------------------------------|
| Real IPM Company (K) Ltd                          | Kenya             | Sichuan Leshan Fuhua Tongda Agro-Chemical Technology Company Ltd, | China                                        |
| SABLE COMBINE (ZAMBIA) LTD                        | Zambia            | Sineria                                                           | China, Cyprus, Netherlands                   |
| sagro Copper S.R.L.                               | Italy             | Sinochem Hebei Corporation                                        | China                                        |
| sagro S.P.A.                                      | Italy             | Sinochem Ningbo Ltd                                               | China                                        |
| Servatis S.A                                      | Brazil            | Sipcam Oxon SpA                                                   | Italy                                        |
| Shaanxi Hengrun Chemical Industry Co. Ltd         | China             | Snow International                                                | China                                        |
| Shaanxi Hengtian Chem-Tech Co. Ltd                | China             | Sulphur Mill Ltd                                                  | India                                        |
| Shaanxi Meibang pesticide                         | China             | Sumitomo Chemicals Co. Ltd                                        | Japan                                        |
| Shaanxi Meibang Pharmaceutical Group Co. Ltd      | China             | Suzhou Chems Chemical Co. Ltd                                     | China                                        |
| Shaanxi Sunger Road Bio-Sciences Co. Ltd          | China             | Swal Corporation Ltd.                                             | India                                        |
| Shandong A & Fine Agrochemicals Co Ltd            | China             | Syngenta Ltd                                                      | UK, Switzerland, Austria, China, Netherlands |
| Shandong Binnong Technology Co Ltd                | China             | T. Stanes & Company                                               | India                                        |
| Shandong Cynda Chemical Co Ltd                    | China             | Tagros Chemicals Ltd                                              | India                                        |
| Shandong Hailir Chemical Co Ltd                   | China             | Taizhou Dapeng Pharmaceutical Industry Co. Ltd                    | China                                        |
| Shandong Heyi Biological Technology Co. Ltd       | China             | Topiary Equipment and Chemicals LLP                               | India                                        |
| Shandong Sino-Agri United Biotechnology Co., Ltd  | China             | United Bio-Shanghai & Shanghai Pharmaceutical (Xiayi) Co Ltd      | China                                        |
| Shandong Sinomey Chemicals Co. Ltd                | China             | UPL Ltd                                                           | India                                        |
| Shandong Sont-ian Chemical Co.Ltd                 | China             | Van Iperen International                                          | Netherlands                                  |
| Shandong United Pesticide Industry Co. Ltd        | China             | W.Neudorff GMBH                                                   | Germany                                      |
| Shandong Weifang Rainbow Chemical Co. Ltd         | China             | Wemax Agro Ltd                                                    | China                                        |
| Shandong Weifang Shuangxing Pesticide Co., Ltd    | China             | Willowood United                                                  | China                                        |
| Shandong Zhongxin Chemistry Co Ltd                | China             | Wuxi Xinan Pesticides Co Ltd                                      | China                                        |
| Shanghai Agro-Tech Co. Ltd                        | China             | Xi an Mpc Stock Co Ltd                                            | China                                        |
| Shanghai Heben-Eastsun Medicaments Co. Ltd.       | China             | XIAN MPC Stock Co. Ltd                                            | China                                        |
| Shanghai Hui Song (H & S) Agro-Solution Co., Ltd. | China             | Yongnong Biosciences Co Ltd                                       | China                                        |
| Shanghai Shengning Pesticides Co. Ltd             | China             | Yunnan Guangming Neem Industry Development Co Ltd                 | China                                        |
| Shanghai Yuelian Biotech Co Ltd                   | China             | Zanhua Goalsun Fine Chemical Co. Ltd                              | China                                        |
| Sharda international Ltd                          | India             | Zanhua Goalsun Fine Chemical Co. Ltd                              | China                                        |
| Shenyang Harvest Agrochemicals Co Ltd             | China             | Zhejiang Runhe Organic Silicon New Material Co. Ltd               | China                                        |
| Shenyang Sciencreat Chemicals Co Ltd              | China             | Zhejiang Biok Biotechnology Co. Ltd                               | China                                        |
| Shijiazhuang Longhui Fine Chemical Co Ltd         | China             | Zhejiang Bosst CropScience Co. Ltd                                | China                                        |
| Shijiazhuang Xingbai Bioengineering Co., Ltd      | China             | Zhejiang Chemical Institute technology Co. Ltd                    | China                                        |
|                                                   |                   | Zhejiang Henben Pesticide & Chemical Co Ltd                       | China                                        |
|                                                   |                   | Zhejiang Jinfanda Biochemical Co. Ltd                             | China                                        |
|                                                   |                   | Zhejiang Qianjiang Biochemical Co. Ltd                            | China                                        |
|                                                   |                   | Zhejiang Sega Science and Technology Co., Ltd                     | China                                        |

| Manufacturer                                        | Country of Origin |
|-----------------------------------------------------|-------------------|
| Zhejiang Tide Cropscience Co<br>Ltd                 | China             |
| Zhejiang Xinnong Chemical<br>Co., Ltd               | China             |
| Zhejiang Yifan Chemical Group<br>Co. Ltd            | China             |
| Zhejiang Zhongshan Chemical<br>Industry Ltd         | China             |
| Zheng shi chemical Ltd                              | China             |
| Zhengzhou Zheng Shi Chemi-<br>cal Co., Ltd          | China             |
| Zibo Zhoucun Suifeng Pesti-<br>cides & Chemical Ltd | China             |





Centre for Environment Justice and Development (CEJAD) is a public interest Non-Governmental Organization in Kenya. CEJAD works to promote sound management of chemicals and waste in order to protect the environment and human health, especially vulnerable populations. CEJAD is an accredited NGO to UNEP and undertakes advocacy programs seeking to eliminate exposure to toxic chemicals by both humans and the environment.



**Centre for Environment  
Justice and Development**